ВЕСТНИК российской	Содержание				
АКАЛЕМИИ	РАЗРАБОТКА МЕСТОРОЖДЕНИЙ НЕФТИ И ГАЗА				
ЕСТЕСТВЕННЫХ НАУК	ЗА НЕФТЬЮ КУЗБАССА С ИННОВАЦИОННОЙ ТЕХНОЛОГИЕЙ				
(Западно– Сибирское	В.В.Ростовцев, Е.Ю. Липихина, А.М. Афанасьев, В.Н. Ростовцев, В.В. Лайнвебер				
отделение)	НОВАЯ ПАРАДИГМА ПОИСКА МЕСТОРОЖДЕНИЙ НЕФТИ И ГАЗА				
Выпуск 24, 2021 г.	В.В. Ростовцев, Е.Ю. Липихина, В.Н. Ростовцев, В.В. Лайнвебер				
Редакционная коллегия	ПУТИ РЕАНИМАЦИИ НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ ТОМСКОЙ ОБЛАСТИ15 В.В. Ростовцев, Е.Ю. Липихина, В.Н. Ростовцев, В.В. Лайнвебер				
Е.В. Протопопов (отв. редактор) М.В. Темлянцев (зам. отв.	ОСОБЕННОСТИ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ТРУДНОИЗВЛЕКАЕМОЙ НЕФТИ В АРКТИКЕ				
редактора)	ГЕОТЕХНОЛОГИЯ И ГЕОМЕХАНИКА42				
К.Г. Громов В.Г. Лукьянов В.Н. Настаров	АЛЛЕЯ ГЕОЛОГОВ В ТОМСКЕ. ИСТОКИ				
В.М. Самаров П.С. Чубик С.М. Простов	ЧИСЛЕННАЯ ОЦЕНКА ВЛИЯНИЯ ГЕОТЕКТОНИЧЕСКОГО ПОЛЯ НАПРЯЖЕНИЙ В ГЕОМАССИВЕ НА ГЕОМЕХАНИЧЕСКИЕ ПАРАМЕТРЫ ПОДЗЕМНЫХ ВЫРАБОТОК				
Печатается по	в.п. Фрянов, л.д. Павлова				
решению Президиума Западно–	ПАРАДОКСЫ ПРИРОДНОГО ЯДЕРНОГО РЕАКТОРА ОКЛО				
Сибирского отделения Российской акалемии	К ВОПРОСУ РАЗРУШЕНИЯ УСТОЙЧИВЫХ ВОДОНЕФТЯНЫХ ЭМУЛЬСИЙ ПОД ДЕЙСТВИЕМ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ				
естественных наук	МЕТАЛЛУРГИЯ				
©Российская академия естественных наук, Запално-Сибирское	ПЕРЕМЕШИВАНИЕ РАСПЛАВА ПРИ ПРОДУВКЕ ИНЕРТНЫМ ГАЗОМ В АГРЕГАТАХ КОВШ-ПЕЧЬ				
отделение, 2021	ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕМПЕРАТУРНЫХ РЕЖИМОВ ПРОКАТКИ МЕЛЮЩИХ ШАРОВ ИЗ ОТБРАКОВКИ РЕЛЬСОВОЙ СТАЛИ НА ИХ УДАРНУЮ СТОЙКОСТЬ				

©Издательский центр Сибирского государственного индустриального	ОПТИМИЗАЦИЯ СОСТАВА МЕТАЛЛОЗАВАЛКИ ПРИ ВЫПЛАВКЕ РЕЛЬСОВОЙ ЭЛЕКТРОСТАЛИ С ЦЕЛЬЮ ПОВЫШЕНИЯ ТЕХНИКО-ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ ЕЕ ПРОИЗВОДСТВА
яндустриального университета Адрес редакции: 654007 г. Новокузнецк, ул. Кирова, 42, Сибирский государственный индустриальный университет тел. 8–3843–78–44–55	ФИЗИКО-ХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ ПРОЦЕССОВ ВОССТАНОВЛЕНИЯ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ ИЗ ШЛАКОВЫХ РАСПЛАВОВ
http://www.sibsiu.ru	БИОМЕДИЦИНА
ISSN 2311–9519	ЧТО ИЗМЕНИЛОСЬ В КЛИНИЧЕСКОЙ ДИАГНОСТИКЕ СЕПСИСА: КОММЕНТАРИИ К НОВЫМ МЕЖДУНАРОДНЫМ РЕКОМЕНДАЦИЯМ SSC 2021 ПО ЛЕЧЕНИЮ СЕПСИСА И СЕПТИЧЕСКОГО ШОКА
	ОРГАНИЗАЦИЯ МЕДИЦИНСКОЙ ПОМОЩИ ПРИ ПОЛИТРАВМЕ. ПРОЕКТ КЛИНИЧЕСКИХ РЕКОМЕНДАЦИЙ
	ФАКТОРЫ, ОКАЗЫВАЮЩИЕ ВЛИЯНИЕ НА ЛЕТАЛЬНОСТЬ ПАЦИЕНТОВ С ПОЛИТРАВМОЙ148 В.В. Агаджанян, А.Х. Агаларян
	ЭНЦИКЛОПЕДИЧЕСКИЕ ЗНАНИЯ И ГУМАНИТАРНЫЕ Науки 151
	РАЗВИТИЕ АМБИЕНТНОЙ СРЕДЫ ГОРОДА КАК ОСНОВЫ ЕГО ВОЗРОЖДЕНИЯ
	ИСТОРИКО-КУЛЬТУРНЫЕ ОСНОВАНИЯ МНОГООБРАЗИЯ МОДЕЛЕЙ ТРАНСФОРМАЦИИ УНИВЕРСИТЕТА167 Н.А. Иванова
	ЮБИЛЕИ174
	РЕФЕРАТЫ183

Применение жидкого чугуна в дуговых электропечах / А. И. Катунин [и др.] // Металлург. – 2000. – №6. – С.32.

Использование жидкого чугуна при выплавке стали в дуговых электропечах / Годик Л. А. [и др.] // Электрометаллургия. – 2002. – №1. – С.9-14.

4. Экономические аспекты использования жидкого чугуна в электросталеплавильном производстве / А. И. Катунин [и др.] // Металлург. – 2000. – № 11. – С.38-39.

5. Экономические аспекты использования жидкого чугуна / А. И. Катунин [и др.] // Сталь. – 2001. – №7. – С. 26-27.

6. Железнодорожные рельсы из электростали / Н. А. Козырев [и др.]. – Новокузнецк, 2006. – 388 с.

УДК 669.187

ФИЗИКО-ХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ ПРОЦЕССОВ ВОССТАНОВЛЕНИЯ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ ИЗ ШЛАКОВЫХ РАСПЛАВОВ

Н.Ф. Якушевич, Е. В. Протопопов, М. В. Темлянцев

ФГБОУ ВО «Сибирский государственный индустриальный университет»,

г. Новокузнецк

Введение

В технологической практике для получения сплавов и лигатур с ЩЗМ в руднотермических электропечах в присутствии в качестве растворителя кремния (например, при плавке ферросилиция, силикокальция, силикобария) образуются шлаковые расплавы, в которых коэффициент активности оксидов ЩЗМ снижается на порядки (для CaO – в 10 – 100 раз [1 – 3]), что может значительно снизить эффективность процессов восстановления.

На сегодняшний день теоретические данные по активностям компонентов в шлаковых расплавах, содержащих BaO, SrO, отсутствуют даже для простых бинарных систем (BaO – SiO₂ ... SrO – SiO₂,) и, тем более, для более сложных трех-четырёхкомпонентных расплавов (CaO – BaO – SrO – SiO₂ – ...), образующихся, например, при переработке карбонатитовых барий-стронциевых концентратов, содержащих до 25 % CaO, до 18 % BaO, до 9 % SrO, до 30 % SiO₂, до 23 % CO₂.

Термодинамика восстановления щелочноземельных металлов из шлаковых расплавов

Диаграммы состояния бинарных систем CaO – SiO₂ [4, 5], SrO – SiO₂ [5 – 10], BaO – SiO₂ [6, 8, 9] с учетом исследований тройных систем CaO – SrO – SiO₂, SrO – BaO – TiO₂, SrO – BaO – Ti₂O, CaO – SiO₂ – Al₂O₃ представлены на рис. 1 [11 – 15]. Видно как строение (и, очевидно, свойства расплавов) данных систем в значительной степени аналогичны. Во всех системах образуются конгруэнтно плавящиеся тугоплавкие силикаты ЩЗМ типа 2*Me*O·SiO₂: 2CaO·SiO₂ ($t_m = 2130$ °C), 2SrO·SiO₂ (~1800 °C), 2BaO·SiO₂ (1760 °C) и моносиликаты CaO·SiO₂ (1544 °C), SrO·SiO₂ (1578 °C), BaO·SiO₂ (1604 °C), образующие достаточно легкоплавкие эвтектики e_1 (1436 °C, 1358 °C, 1410 °C (для BaO·2SiO₂)) и e_2 (1460 °C, 1550 °C, 1560 °C).

Области гомогенных расплавов при температурах 1600 – 1700 °С лежат между линиями ликвидуса, ограничивающими двухфазные области \mathcal{K} + $MeO\cdot SiO_2(TB)_B$ (или \mathcal{K} + 2 $MeO\cdot SiO_2$) и \mathcal{K} + $SiO_2(TB)$ (кристобалит, тридимит). Это предопределяет ход изотерм активностей компонентов на диаграмме, представленной на рис. 2 в координатах $x_{SiO_2} - a_{SiO_2}$ при температурах 1600 – 1700 °С. Знакопеременный по отношению к закону Рауля ход изотерм активностей позволяет достаточно точно фиксировать точку их пересечения с линией закона Рауля ($a_{SiO_2} = x_{SiO_2}; y_{SiO_2} = 1$): точки C_1 , C_2 на изотермах активностей системы CaO – SiO₂; точки $S_1 - S_2$ – на изотермах активностей системы BaO – SiO₂.

В области гомогенных расплавов диаграмм состояния систем SrO – SiO₂, BaO – SiO₂ и CaO – SiO₂ (рис. 1, *a* – *в*) нанесены линии изоактивностей

диоксида кремния, построенные по изображенным на рис. 2 изотермам.

Значения активностей оксидов ЩЗМ в эвтектических точках трехфазных инвариантных равновесий в системе SrO – SiO₂:

$$e_1(\mathfrak{m}_{e_1} + \mathrm{SiO}_2(\mathrm{TB}) + \mathrm{SrO} \cdot \mathrm{SiO}_2(\mathrm{TB})), t_{e_1} = 1358\ \mathrm{C}, x_{\mathrm{SiO}_2} \approx 0,68;$$

 $e_2(\mathfrak{m}_{e_2} + 2\mathrm{SrO} \cdot \mathrm{SiO}_2(\mathrm{TB}) + \mathrm{SrO} \cdot \mathrm{SiO}_2(\mathrm{TB})), t_{e_2} = 1550\ \mathrm{C}, x_{\mathrm{SiO}_2} \approx 0,485;$
в системе BaO – SiO₂ в точках:

$$e_1(\mathfrak{m}_{e_1} + \mathrm{SiO}_2(\mathrm{TB}) + \mathrm{BaO} \cdot 2\mathrm{SiO}_2(\mathrm{TB})), t_{e_1} = 1374\,^\circ\mathrm{C}, x_{\mathrm{SiO}_2} = 0,74;$$

$$e_2(ж_{e_2} + 2BaO \cdot 3SiO_2(тв) + BaO \cdot SiO_2(тв)), t_{e_2} = 1410$$
 °С, $x_{SiO_2} = 0,58$;

$$e_3(\mathfrak{m}_{e_3} + \text{BaO} \cdot \text{SiO}_{2\text{ TB}} + 2\text{BaO} \cdot \text{SiO}_{2\text{ TB}}), t_{e_2} = 1560^{\circ}C, x_{\text{SiO}_2} = 0,485;$$

определялись из констант равновесия эвтектических реакций кристаллизации [15], например, для реакции эвтектической кристаллизации расплава состава e_2 системы SrO – SiO₂ (1)

0,48 SiO₂(ж) + 0,52 SrO(ж) = 0,04 (2 SrO·SiO₂) + 0,44 (SrO·SiO₂);

$$\Delta G_{(1)1823K}^{\circ} = 0,04\Delta G_{1823K}^{\circ} (2SrO \cdot SiO_2) + 0,44\Delta G_{1823K}^{\circ} (SrO \cdot SiO_2);$$

$$lgK_{(1)1923} = -\frac{\Delta G_{1823K}^{\circ}}{19,14 \cdot 1023} = 2,0 \quad (1)$$

$$\Delta G_{(1)1823}^{\circ} = -69550 \text{ Дж};$$

$$K_{(1)} = \frac{1}{a_{\text{SiO}_2}^{0,48} \cdot a_{\text{SrO}}^{0,52}}.$$

Приняв по экстраполированным (рис. 1, *a*) значениям активности SiO₂ в точке $e_2 a_{SiO_2} \approx 0,11$, можно определить значения активности SrO

$$lga_{\rm SrO} = -1,94lgK_{(1)} + 0,9 = -2,97; a_{\rm SrO_{(e_2)}} = 0,001.$$

Использованные в работе значения $\Delta G^{\circ} = f(T)$ для силикатов ЩЗМ приведены в табл. 1.

Таблица 1 - Энергия Гиббса $\Delta G^{\circ} = f(T)$ образования оксидов из элементов и силикатов ЩЗМ из оксидов

Силикат	$\Delta G^{\circ} = f(T),$ Дж	Источник
SiO ₂	-911700+196,65T	[2]
SrO	-721090+178T	[2]
BaO	-715000+180T	[2]
CaO	-795910+195,2T	[2]
$SrO \cdot SiO_2$	-148049-7,66T	[6, 11]
2 SrO \cdot SiO $_2$	-214347+28,91T	[6, 11]
$BaO \cdot 2SiO_2$	-156871+68,226T	[6, 7]
$2BaO \cdot 3SiO_2$	-334850+0,0154T	расчет
$BaO \cdot SiO_2$	-177980+13,043T	[6, 15]
$2BaO \cdot SiO_2$	-302070+0,056T	[6]
$CaO \cdot SiO_2$	-83300-3,43T	[2, 4]
$2CaO \cdot SiO_2$	-144460-13,98T	[2, 4]

В результате аналогичных расчётов для точек инвариантных равновесий систем SrO·SiO₂, BaO·SiO₂, CaO·SiO₂, выполненных по методике работы [16] с использованием исходных термодинамических данных $\Delta G^{\circ} = f(T)$, которые представлены в табл. 1, получены в реперных точках значения $a_{MeO_{III3M}}$, обозначенные также на рис. 2.

Для двухфазных равновесий ($\mathcal{K} + MeO \cdot SiO_2(TB)$ (т. *м*'), $\mathcal{K} + 2MeO \cdot SiO_2(TB)$ (т. *м*'')) также можно рассчитать значения a_{MeO} , например, для точки *м*' системы SrO·SiO₂ процесс кристаллизации (плавления) силиката SrO·SiO₂ описывается реакцией

0,5(SiO₂)(ж) + 0,5(SrO)(ж) = 0,5(SrO · SiO₂)(тв) (2)

$$\Delta G^{\circ}_{(2)_{1851}} = -81113 \ \text{Дж}; \ a_{\text{SiO}_2} = 0,2;$$

 $lgK_2 = \frac{81113}{19,14 \cdot 1851} = 2,209; \ K_{(2)_{1851}} = 194,7;$
 $K_{(2)} = \frac{1}{a^{0,5}_{\text{SiO}_2} \cdot a^{0,5}_{\text{SrO}}}; \ lga_{\text{SrO}} = -lga_{\text{SiO}_2} - 2lgK_{(2)} = 0,7 - 4,578 = -3,878;$
 $a_{\text{SrO}} = 1,32 \cdot 10^{-4}.$

Равновесные параметры гомогенного шлакового расплава можно оценить применительно к процессу углеродосиликотермического восстановления из констант равновесия реакций:

$$2\text{SrO} + [\text{Si}] \rightarrow 2[\text{Sr}] + (\text{SiO}_2) \quad (3)$$

$$2(\text{BaO}) + [\text{Si}] \rightarrow 2\text{Ba} + \text{SiO}_2 \quad (4)$$

$$K_{(3)} = \frac{a_{[\text{Sr}]}^2 \cdot a_{(\text{SiO}_2)}}{a_{(\text{SrO})}^2 \cdot a_{[\text{Si}]}}; \quad K_{(4)} = \frac{a_{[\text{Ba}]}^2 \cdot a_{(\text{SiO}_2)}}{a_{(\text{BaO})}^2 \cdot a_{[\text{Si}]}};$$

$$lga_{(\text{SrO})} = lga_{[\text{Sr}]} + \frac{1}{2} lga_{(\text{SiO}_2)} - \frac{1}{2} lga_{[\text{Si}]} - \frac{1}{2} lgK_{(3)};$$

$$lga_{(\text{BaO})} = lga_{[\text{Ba}]} + \frac{1}{2} lga_{(\text{SiO}_2)} - \frac{1}{2} lga_{[\text{Si}]} - \frac{1}{2} lgK_{(4)}.$$

В высококремнистых сплавах (Si > 50 %) значения активности кремния близки к равновесным для реакции (3), в железокремнистых сплавах при 1600 – 1700 °С $a_{Si} \approx 0.6 \div 0.8$ [8]. Область гомогенных шлаковых расплавов при этих температурах распределяется в интервале концентраций $x_{(SiO_2)} = 0.6 \div 0.72$ (54 – 39 % (по массе) SrO; $a_{SiO_2} = 0.7 \div 1.0$).

Тогда значения $lgK_{(3)}$ и $lgK_{(4)}$ можно определить из уравнений

$$lgK_{(3)} = \frac{-\Delta G_{(3)}^{\circ}}{2,303RT}; \ lgK_{(4)} = \frac{-\Delta G_{(4)}^{\circ}}{2,303RT};$$
$$\Delta G_{(3)}^{\circ} = \Delta G_{SiO_{2}}^{\circ} - 2\Delta G_{SrO}^{\circ}; \ \Delta G_{(4)}^{\circ} = \Delta G_{SiO_{2}}^{\circ} - 2\Delta G_{BaO}^{\circ}.$$

В работе [1] с использованием результатов исследований [17, 18] определены значения $a_{\rm Sr}$ при 1493 °C как функции концентрации кремния в сплаве $a_{\rm [Sr]} = f(x_{\rm [Si]})$ при $x_{\rm [Si]} = 0 \div 0,5$ и $a_{\rm [Ba]}$ при 1450 °C и $x_{\rm Si} = 0 \div 0,3$.

Зависимости изменения $\lg a_{(SrO)} = f(x_{(SiO_2)}, x_{[Si]})$ и $\lg a_{(BaO)} = f(x_{(SiO_2)}, x_{[Si]})$ представлены на рис. 3, 4.

Расчетные значения активностей кремния в металлических расплавах качественно согласуются результатами исследований в работах [20 – 27], активностей SiO₂ в шлаковых расплавах систем CaO – SiO₂ и CaO –Al₂O₃ – SiO₂ в работах [4, 27], равновесных значений активностей компонентов в системах металл – шлак в работах [3, 20, 28, 29].

Рисунок 1. Диаграммы состояния систем $SrO - SiO_2(a)$, $BaO - SiO_2(b)$, $CaO - SiO_2(b)$

Рисунок 2. Активности компонентов в расплавах систем CaO – SiO₂, BaO – SiO₂ и SrO – SiO₂: Δ , \Box , × – расчетные значения lga(BaO, SrO, CaO) в точках инвариантных равновесий e_1 , e_2 , m'

			Состав жидкой								
Система	Тошки составов	τV		фазы	Реакция	AG° K IN	K	<i>a</i> ara	<i>a</i>	a	0.
Cherema	гочки составов	<i>1</i> , K	x_{SiO_2}	SiO ₂ , %	Тсакция	до, кдж	м _р	⁴ S ₁₀₂	u _{CaO}	uBaO	u _{Sr0}
<u> </u>		1.621	0.670	масс.		25.00	1	1.0			1 10-8
$SrO - SiO_2$	e_1	1631	0,670	53,0	$0,67SiO_2 + 0,33SrO = 0,34SiO_2(TB) + 0,33(SrO \cdot SiO_2)(TB)$	-37,30	$K = \frac{1}{a_{\rm SrO}^{0.32}} = 15,66$	1,0			1·10 °
	e_2	1823	0,480	34,5	$0,48SiO_2 + 0,52SrO = 0,04(SiO_2 \cdot 2SrO)(TB) + 0,44(SiO_2 \cdot SrO)(TB)$	-69,55	$K = \frac{1}{a_{\rm SiO_2}^{0,48} \cdot a_{\rm SrO}^{0,52}} = 1,99$	0,1			1.10-4
	$M'(SrO - SiO_2)$	1851	0,500	38,0	$0,5(SiO_2)(x) + 0,5(SrO)(x) = 0,5(SrO \cdot SiO_2)(TB)$	+71,00	$K = \frac{1}{a_{\text{vis}}^{0.5} \cdot a_{\text{vis}}^{0.5}} = 0,01$	0,2			3.10-5
	<i>м</i> "(2SrO – SiO ₂)	2073	0,330	20,0	$0,33(SiO_2)(x) + 0,66(SrO)(x) = 0,33(2SrO \cdot SiO_2)(tb)$	-165,00	$K = \frac{1}{a_{\rm SiO_2}^{0.37} \cdot a_{\rm SrO}^{0.67}} = 1,01$	~0,001			1,5.10-3
$BaO - SiO_2$	<i>e</i> ₁	1647	0,750	50,0	$0,75SiO_2 + 0,25BaO = 0,25SiO_2(трид) + 0,25(BaO \cdot 2SiO_2)(тв)$	-27,3	$K = \frac{1}{a_{\rm SiO_2}^{0,79} \cdot a_{\rm BaO}^{0,25}} = 7,34$	0,31		3,43.10-4	
	<i>e</i> ₂	1683	0,580	65,0	$0,58SiO_2 + 0,42BaO = 0,1(BaO \cdot SiO_2)(TB) + 0,16(2BaO \cdot 3SiO_2)(TB)$	-68,97	$K = \frac{1}{a_{\rm SiO_2}^{0.58} \cdot a_{\rm BaO}^{0.42}} = 138$	0,45		2,42.10-5	
	<i>e</i> ₃	1823	0,480	27,0	$0,48SiO_2 + 0,52BaO = 0,44(BaO \cdot SiO_2) + 0,04(2BaO \cdot SiO_2)(TB)$	-69,58	$K = \frac{1}{a_{\rm SiO_2}^{0,48} \cdot a_{\rm BaO}^{0,52}} = 100$	0,08		1,46.10-3	
	$M'(BaO - SiO_2)$	1873	0,500	30,0	$0,5SiO_2 + 0,5BaO = 0,5(BaO \cdot SiO_2)(TB)$	-76,77	$K = \frac{1}{a_{0:0}^{0.5} \cdot a_{0:0}^{0.5}} = 138,4$	0,09		6,5.10-4	
	м"(2BaO – SiO ₂)	2033	0,333	17,0	0,333SiO ₂ + 0,667BaO = 0,333(2BaO·SiO ₂)(TB)	-10,11	$K = \frac{1}{a_{\rm SiO_2}^{0.33} \cdot a_{\rm Ba0}^{0.667}} = 1,82$	0,01 – 0,005		0,4	
$CaO - SiO_2$	e_1	1709	0,610	64,0	0,61SiO ₂ + 0,39CaO = 0,39(CaO·SiO ₂)(тв) + 0,22SiO ₂ (трид)	-161,41	$K = \frac{1}{a_{\rm SiO_2}^{0,61} \cdot a_{\rm CaO}^{0,39}} = 3,53$	1,0	0,0019		
	<i>e</i> ₂	1733	0,440	45,5	0,44SiO ₂ + 0,56CaO = 0,2(CaO·SiO ₂)(tb) + 0,12(3CaO·2SiO ₂)(tb)	-115,66	$K = \frac{1}{a_{\rm SiO_2}^{0,44} \cdot a_{\rm CaO}^{0,56}} = 3,48$	0,2	0,01		
	$M'(CaO - SiO_2)$	1817	0,500	52,0	$0,5SiO_2 + 0,5CaO = 0,5(CaO \cdot SiO_2)(TB)$	-44,77	$K = \frac{1}{a_{\text{SiO}}^{0,5} \cdot a_{\text{CoO}}^{0,5}} = 1,28$	0,5	0,007		
	<i>м</i> "(2CaO – SiO ₂)	2403	0,330	35,0	0,333SiO ₂ + 0,666CaO = 0,333(2CaO·SiO ₂)(tb)	-45,77	$K = \frac{1}{a_{\rm SiO_2}^{0,333} \cdot a_{\rm CaO}^{0,666}} = 1,0$	0,001			

Таблица 2 - Параметры инвариантных равновесий в бинарных системах SrO – SiO₂, BaO – SiO₂, CaO – SiO₂

Рисунок 3. Зависимости $lga_{(SrO)} = f(a_{(SiO_2)}, a_{[Si]})$ при 1493 °С (—•—•) и $lga_{(BaO)} = f(a_{(SiO_2)}, a_{[Si]})$ при 1450 °С (—•—•)

Рисунок 4. Изменение активностей $a_{(BaO)}$ и $a_{(SrO)}$ в шлаковых расплавах в зависимости от активности кремнезема $a_{(SiO_2)}$ и кремния $a_{[Si]}$ в равновесных шлаковых и металлических расплавах

Из приведенных на рис. 4 зависимостей видно, что значения a_{BaO} в шлаковых расплавах в широком диапазоне составов ($a_{SiO_2} = 0,3 \div 0,8$) имеют положительные отклонения от закона Рауля ($lga_{BaO} = +3,5$) при активности кремния в металле $a_{[Si]} = 0,51$ и в шлаке $a_{SiO_2} = 0,8$ (координаты точек 1 - 1' - 1'' - 1'''), снижаясь до значений $lga_{BaO} = +2,5$ при повышении активности кремния до значений $a_{Si} \approx 0,7$ и понижении активности кремнезема в шлаке до значений $a_{SiO_2} \approx 0,3$. При более высоких значениях активностей кремния в металле ($a_{Si} > 0,7$) равновесные значения a_{BaO} в шлаке резко снижаются до значений $lga_{BaO} = -3,3$ (при $a_{SiO_2} \approx 0,8$ и $a_{Si} \ge 0,8$) и $lga_{BaO} = -4$ (при $a_{(SiO_2)} = 0,3$ и $a_{Si} = 0,81$).

Зависимости $a_{\rm SrO}$ имеют максимальные значения ($lga_{\rm (SrO)} = -1,3$ при $a_{\rm (SiO_2)} = 0,8$) – точки 4 – 4' – 4'' – 4''', снижаясь до значений $lga_{\rm SrO} = -2$ при $a_{\rm [Si]} = 0,42$ и $a_{\rm (SiO_2)} = 0,1$. При повышении активности кремния (и, соответственно, концентрации кремния в металлическом расплаве) активности $a_{\rm (SrO)}$ ступенчато снижаются до значений $lga_{\rm (SrO)} \approx -5,5$ при $a_{\rm (SiO_2)} = 0,8$ и $a_{\rm [Si]} = 0,89$.

Такой ход кривых зависимостей активностей $a_{BaO} = f(a_{[Si]}, a_{(SiO_2)})$ и $a_{SrO} = f(a_{[Si]}, a_{(SiO_2)})$ позволяет считать, что наиболее эффективное восстановление оксидов ЩЗМ из шлаковых расплавов осуществляется при значениях $a_{[Si]} > 0,8$ как из кислых шлаков $(a_{(SiO_2)} \approx 0,5 \div 0,8)$, так и из шлаков с высокой основностью $(a_{SiO_2} = 0,1 \div 0,5)$, при этом достигаются минимальные значения активностей a_{SrO} и a_{BaO} и, соответственно, концентраций оксидов бария и стронция.

Восстановление оксида стронция может осуществляться более эффективно, чем оксида бария. Вероятно, отмеченные соотношения могут существенно изменяться при более высоких температурах.

Выводы

Определены зависимости $a_{(SiO_2)} = f(x_{SiO_2})$ в шлаковых расплавах систем SrO – SiO₂, BaO – SiO₂, CaO – SiO₂ при температурах 1600 и 1700 °C.

В точках инвариантных состояний (эвтектик и монотектик) рассчитаны активности компонентов шлаковых расплавов. В гомогенных шлаковых расплавах определены активности $a_{(SrO)} = f(x_{(SiO_2)}, x_{[Si]})$ при 1493 °C и $a_{(BaO)} = f(x_{(SiO_2)}, x_{[Si]})$ при 1450 °C.

Минимальные значения активностей оксидов $a_{(SrO)}$ и $a_{(BaO)}$ могут достигаться при высоких значениях активностей кремния в металлическом расплаве ($a_{[Si]} \ge 0.7$; $lga_{(SrO)} \approx -5$; $lga_{(BaO)} \approx -4$). В этих условиях восстановление (довосстановление) стронция и бария осуществляется, в основном, кремнием, при этом неизбежно повышается концентрация диоксида кремния в шлаке. При низких содержаниях кремния в металле ($a_{[Si]} \approx 0.5 \div$ 0,6) восстановление оксидов стронция и бария осуществляется, в основном, углеродом, а кремний выполняет роль растворителя ЩЗМ.

Список использованных источников

Термодинамика восстановления щелочноземельных металлов и оксидов и условия кристаллизации сплавов в системе Fe – Si – Me (ЩЗМ) / H.
 Ф. Якушевич, Е. В. Протопопов, М. В. Темлянцев [и др.]. – Проблемы черной металлургии и материаловедения. – 2020. – № 2. – С. 5-15.

Эллиот, Д. Термохимия сталеплавильных процессов / Д. Эллиот, М. Глейзер, В. Рамакришна. – Пер. с англ. С.Н. Расиной; под ред. Ю. Л. Плинера, Н. С. Смирнова. – Москва : Металлургия, 1969. – 252 с.

 Якушевич, Н. Ф. Взаимодействие углерода с оксидами кальция, кремния, алюминия / Н. Ф. Якушевич, Г.В. Галевский. – Новокузнецк : ИЦ СибГИУ, 1999. – 250 с.

4. Атлас шлаков. Справочник. Москва : Металлургия, 1985. – 208 с.

5. Рябчиков, И. В. Модификаторы и технологии внепечной обработки железоуглеродистых сплавов / И. В. Рябчиков. – Москва : Экомет, 2008. – 400 с.

 Кожевников, Г. Н. Электротермия лигатур щелочноземельных металлов с кремнием / Г. Н. Кожевников, В. П. Зайко, М. А. Рысс. – Москва : Наука, 1978. – 224 с.

7. Зубов, В. Л. Электрометаллургия ферросилиция / В. Л. Зубов, М. И. Гасик. – Днепропетровск : Системные технологии, 2002. – 704 с.

8. Numerical analysis of the particle-induced effect on gas flow in a supersonic powder-laden oxygen jet / M. Li, L. Li, B. Zhang [et.al.]. – Metallurgical and Materials Transactions B : Process Metallurgy and Materials Processing Science. – 2020. – Vol. 51. – No. 4. – P. 1718–1730. http://doi.org/10.1007/s11663-020-01855-3.

9. Simulation of gas-liquid two-phase flow in metallurgical process / B. Wang,
S. Shen, Y. Ruan [et. al.]. – Acta Metallurgica Sinica. – 2020. – Vol. 56. – No. 4. –
P. 619-632. http://doi.org/10.11900/0412.1961.2019.00385

10. Model for the final decarburisation of the steel bath through a selfbubbling effect / S. Barella, C. Mapelli, D. Mombelli [et. al.]. – Ironmaking and Steelmaking. 2019. – Vol. 46. – No. 8. – P. 721–724. http://doi.org/10.1080/03019233.2017.1405179.

11. Changing nickel and chromium stainless steel markets – a review / H. H. Pariser, N. R. Backeberg, O. C. M. Masson, J. C. M. Bedder. – Journal of the Southern African Institute of Mining and Metallurgy. – 2018. – Vol. 118. – No. 6. – P. 563–568.

 Zhuchkov, V. I. Utilization of substandard and offgrade raw materials for chromium and manganese ferroalloys production / V. I. Zhuchkov, O. V. Zayakin, A. V. Zhdanov. – Proceedings of the Twelfth International Ferroalloy Congress. V. I. Helsinki, Finland : Outotec Oyj, 2010. – P. 311-315. 13. Irons, G. A. Treatment of Steel with Alkaline-earth Elements / G. A. Irons,
X. -P. Tong // ISIJ International. – 1995. – Vol. 35. – No. 7. – P. 838–844.
https://doi.org/10.2355/isijinternational.35.838

14. Methods for Improving the Efficiency of Steel Modifying / I. V. Bakin, G.
G. Mikhailov, V. A. Golubtsov [et. al.]. – Material Science Forum. – 2019. – Vol.
946. – P. 215-222.

https://doi.org/10.4028/www.scientific.net./MSF.946.215

15. Анализ фазово-химических равновесий в системе расплав (Fe – Si – C)
– шлак (CaO – Al₂O₃ – SiO₂) – газ (O₂ – SiO – CO) / Н. Ф. Якушевич, О. А. Полях, Г. В. Галевский, А. А. Тяжина. – Известия вузов. Черная металлургия.
2015. – Т. 58. – № 5. – С. 316-321. https://doi.org/10.15825/0368-0797-2015-5-316-321

16. Якушевич, Н. Ф. Термодинамика первичных шлаков в системе CaO – Al₂O₃ –SiO₂ / Н. Ф. Якушевич, Д. В. Кондратьев. // Известия вузов. Черная металлургия. – 2000. – № 2. – С. 4-9.

17. Энтальпии смешения жидких кремния и бария при 1723 К / Ю. О.
Есин, В. Н. Сандаков, П. В. Гельд [и др.]. – Журнал прикладной химии. – 1973.
– Т. 46. – № 11. – С. 2402-2405.

18. Энтальпия образования сплавов стронция с кремнием / Ю. О. Есин,
С. П. Колесников, В. М. Баев [и др.]. – Журнал физической химии. – 1979. – Т.
53. – № 6. – С. 1624-1625.

19. Turkdogan, E. T. Physicochemical properties of slags and glasses // The Metal soc. – 1983. – Vol. 10. – No. 4. – P. 113-117.

20. Григорьев, Ю. В. Термодинамический анализ совместного восстановления кремния и бария углеродом / Ю. В. Григорьев, И. В. Рябчиков, В. Е. Рощин. – Известия вузов. Черная металлургия. – 2005. – № 7. – С. 3–5.

21. Schei, A. Production of hight silicon alloys. / A. Schei, J. K. Tuset, H.Tveit. – Trondheim, Norway : Tapir Academic Press, 1998. – 363 p.

22. Wang, J. Slag figures. / J. Wang, Yu Mao. – Berjing : Metallurgical Industry Press, 1989. – P. 44-60.

23. Margaria, T. Silicon refining: Experimental studies and industrial means to control silicon quantity in silicon for chemical industry / T. Margaria. – Norway : Norw University of Science and Technology, 1993. – P. 21–32.

24. Breitzmann, M. Refining of steel melts using alkaline earth metals / M. Breitzmann, H.-J. Engell, D. Janke. – Steel Research. – 1988. – Vol. 59. – No. 7. – P. 289–294. https://doi.org/10.1002/srin.198801505

25. A thermodynamic model to desing the equilibrium slag compositions during electroslag remelting process: Description and verification / S. Li, G. Cheng, L. Yang [et. al.]. – ISIJ International. – 2017. – Vol. 57. – No. 4. – P. 713-722. https://doi.org/10.2355/isijinternational.ISIJINT-2016-655

26. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part-1. Mass-transfer model / D. Hou, Z. H. Jiang, Y. W. Dong [et. al.]. – ISIJ International. 2017. – Vol. 57. – No. 8. – P. 1400-1409. https://doi.org/10.2355/isijinternational.ISIJINT-2017-147

27. Ozturk, B. Activity of silica in calcium-aluminate based slags / B. Ozturk,
R. J. Fruehan/ – Metall Trans. B. – 1987. – Vol. 18B. – P. 746-751.

28. Weiss T., Schwerdfeger K. Chemical equilibria between silicon and slag melts // Metallurgical and Materials Transacitons B. 1994. Vol. 25. No. 4. P. 497–504. https://doi.org/10.1007/BF02650071

29. Zhang Xiao-Bing, Jiang Guo Chang, Xu Kuang Di. Prediction of component activities of quaternary systems using the sub-regular solution model // Acta Metallurgic Sinica. 1992. Vol. 5b. No. 6. P. 476 – 482.

Научное издание

ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ ЕСТЕСТВЕННЫХ НАУК ЗАПАДНО–СИБИРСКОЕ ОТДЕЛЕНИЕ

Выпуск 24, 2021 г.

В авторской редакции

Подписано в печать 14.10.2022 г. Формат бумаги 60×84 1/8. Бумага писчая. Печать офсетная. Усл. печ.л. 11. Уч.–изд.л. 12,4. Тираж 300 экз. Заказ № 261

Отпечатано в Издательском центре Сибирского государственного индустриального университета