Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет»

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ЕСТЕСТВЕННЫЕ И ТЕХНИЧЕСКИЕ НАУКИ

ЧАСТЬ І

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых 19 – 21 мая 2020 г.

выпуск 24

Под общей редакцией профессора М.В. Темлянцева

Новокузнецк 2020

Редакционная коллегия:

д-р техн. наук, профессор Темлянцев М.В., д-р физ.-мат. наук, профессор Громов В.Е., д-р геол.- минерал. наук, профессор Гутак Я.М., д-р техн. наук, профессор Фрянов В.Н., канд. техн. наук, доцент Чаплыгин В.В., д-р техн. наук, профессор Галевский Г.В., д-р техн. наук, доцент Фастыковский А.Р., д-р техн. наук, профессор Козырев Н.А., канд. техн. наук, доцент Коротков С.Г.

H 340

Наука и молодежь: проблемы, поиски, решения: труды Всероссийской научной конференции студентов, аспирантов и молодых ученых / Сиб. гос. индустр. ун-т; под общ. ред. М.В. Темлянцева. — Новокузнецк: Изд. центр СибГИУ, 2020. - Вып. 24. - Ч. І. Естественные и технические науки. — 480 с., ил.-164, таб.- 88.

Представлены труды Всероссийской научной конференции студентов, аспирантов и молодых ученых по результатам научно-исследовательских работ. Первая часть сборника посвящена актуальным вопросам в области естетсвенных наук, перспективных технологий разработки месторождений полезных ископаемых, металлургических процессов, технологий, материалов и оборудования, экологии, безопасности, рационального использования ресурсов.

Материалы сборника представляют интерес для научных и научнотехнических работников, преподавателей, аспирантов и студентов вузов.

Таблица 2 — Технологические показатели высокоамперных электролизеров ОК РУСАЛ

Параметры	PA-300	PA-400	PA-550
Сила тока, кА	300	400	550
Выход по току, %	95.2	95.5	95.5
Производство Al, кг Al/сутки	2324	3033	4000
Среднее напряжение на электролизере, В	4.34	4.19	<3.94
Коэффициент анодных эффектов	0.1	0.08	0.05
Энергопотребление, пост.ток кВт*ч/т Al	14026	13263	<12500
Плотность тока на аноде, A/cm ²	0.85	0.815	0.89
Криолитовое отношение	2.35	2,29	2,24
Температура криолита, °С	956	959	963
Межполюсное расстояние, см	6.5	6.3	4.5

УДК 662.741.34

КОКСОВАНИЕ В БОЛЬШЕГРУЗНОЙ КОКСОВОЙ БАТАРЕЕ: ПРЕИМУЩЕСТВА УВЕЛИЧЕНИЯ ОБЪЕМА КАМЕРЫ

Филенкова Т.А., Новиков М.В., Литвинов А.П. Научный руководитель: канд. техн. наук, доцент Полях О.А.

Сибирский государственный индустриальный университет, г. Новокузнецк, e-mail: kafcmet@sibsiu.ru

На основе литературных данных рассмотрены процессы коксования в коксовой печи, конструкция коксовой печи и коксовой батареи. Очевидно, что производительность коксовой батареи прямо зависит от объема печной камеры, периода коксования и числа печей в батарее. Основным направлением развития конструкции коксовых печей является сооружение коксовых батарей большой мощности с печами повышенной емкости. Увеличение полезного объема камеры достигается за счет увеличения ширины и высоты камеры. В данной работе рассмотрены преимущества большегрузных коксовых батарей.

Ключевые слова: коксование, коксовая батарея, коксовая печь, камера коксования, коксовый пирог, кокс, полукокс, шихта.

Наибольшее значение для российской промышленности по своим масштабам, разнообразию и ценности получаемых продуктов имеет коксование, являющееся основным процессом химической переработки твердого топлива. В России коксованием перерабатывается до 60 млн. т. углей [1]. Высокотемпературное коксование или просто коксование – процесс термической переработки твердого топлива без доступа воздуха при температуре 1000-1100 °C. При коксовании углей получается твердый остаток – кокс. Од-

новременно с коксом образуется парогазовая смесь, из которой выделяют ценные химические продукты –смолы, коксовый газ, бензольные углеводороды, пиридиновые основания и др. [2].

Коксование шихты осуществляют в коксовых печах. Группа коксовых печей, работающих в едином технологическом режиме, с общим фундаментом, устройствами для подвода отопительного газа и воздуха, отвода продуктов горения и коксования называется коксовой батареей. Современные коксовые печи объединяют в батареи по 50 - 60 камер. Две-три батареи образуют блок коксовых печей. Коксовая батарея сооружается на железобетонном основании — фундаментной плите, на которой расположены борова для отвода продуктов горения в дымовую трубу. По длине коксовая батарея ограничена подпорными стенами - контрфорсами. Контрфорсы предохраняют от разрушения крайние печи за счет давления распирания угольной загрузки, перепада температур в момент загрузки, выгрузки шихты и кокса. Кроме этого, контрфорсы выполняют роль теплоизоляции для крайних печей и обогревательных простенков.

Коксовая печь состоит из камеры коксования и отопительной системы. Назначение камеры — коксование угольной загрузки. В конструкции камеры различают под — основание камеры и свод, который является частью перекрытия печей. В перекрытии печей расположены люки для загрузки шихты и отвода летучих продуктов коксования. В современных коксовых печах имеется по три загрузочных и по два газоотводящих люка. Камера коксования с торцов закрывается дверями. Камера коксования характеризуется средней шириной, высотой, длиной и полезным объемом. Ширина камеры коксования неодинакова. Она увеличивается в направлении выдачи кокса — коксового «пирога». Разница в ширине камеры с торцов (конусность) составляет 40-50 мм для отечественных печей. Полезный объем камеры меньше полного объема, так как шихта загружается не на всю высоту с тем, чтобы оставался свободный проход (около 300 мм) для парогазовых продуктов. Полезная длина камеры коксования меньше полной длины на величину захода футеровки дверей в камеру.

Камеры коксования современных коксовых печей имеют следующие размеры: ширина 350-560 мм, полная длина 11-17 м, полная высота 3,0-7,5 м, полезный объем 14-52 м³ [3].

Процесс коксования угля предусматривает целый комплекс различных стадий, к которым относятся: подготовка сырья, непосредственно само коксование, выгрузка и охлаждение кокса, а также переработка летучих веществ. Для коксования отбирают каменный уголь следующих марок: газовые, жирные, отощенно-спекающиеся, коксовые. После этапа подготовки сырья происходит отбор угольной шихты, которая должна быть максимально однородной. Этот процесс важен, поскольку именно от него будет зависеть качество кокса. После того как шихту хорошо измельчили и смешали, ее направляют в башню, из которой ее дальше подают в коксовые печи. За-

тем шихту утрамбовывают, а саму печь начинают постепенно нагревать. Время, которое нужно потратить на нагрев печи, зависит от нескольких факторов: ее ширины, влажности сырья и других. В среднем оно составляет от 14 до 18 часов.

Следует отметить, что особое значение при этом имеет температура, которая разнится в зависимости от стадии коксования. А именно, на этапе сушки температура достигает 100-120 °C, нагрева – 120-350 °C, размягчения – 350-500 °C, полукоксования – 500-600 °C, прокаливания и затвердения сырья – 600-1100 °C. Поскольку в разных слоях шихты, которая находится в печах, одновременно происходят различные процессы, коксование является слоевым, так как в одной печи находятся в одно и то же время слои влажного и сухого угля, а также кокса и полукокса. После окончания процесса коксования полученный продукт охлаждают и разделяют его на несколько классов в зависимости от размера кусков [4].

Для увеличения производительности и качества кокса необходимы большегрузные коксовые батареи. На рисунке представлены страны, использующие большегрузные коксовые батареи. Увеличение мощности достигается за счет увеличения полезного объема камер коксования (41,3-61,4 м³), в частности увеличением ширины камеры, а также уменьшения толщины стенки камеры коксования до 90-100 мм. Увеличение габаритов обеспечивает большую производительность (900-1250 тыс. т/год кокса 6 % влажности), а уменьшение толщины стен камер коксования позволяет повысить скорость коксования (при этом период коксования изменяется на 5,4-6,5 минуты на каждый миллиметр изменения толщины стенки при постоянной температуре в обогревательных каналах). Так, например, коксовые батареи в Италии имеют толщину стенки 100 мм, коксовая батарея на AO «EBPA3 3CMК» – 90 мм, в Польше – 100 мм. За счет этого при сохранении периода коксования обеспечивается снижение температур в обогревательных простенках, а, следовательно, и уменьшение расхода тепла на коксование. Также снижается количество вредных выбросов в атмосферу.

В 2006 году введены в эксплуатацию коксовая батарея №4 «Харьковский коксовый завод» с печами шириной 500 мм и коксовая батарея №5 ОАО «Алтайкокс» с печами шириной 480 мм. На коксовых батареях №1 и №2 АО «ЕВРАЗ ЗСМК» после реконструкции ширина камер увеличена до 480 мм. При реконструкции батарей с объемом камер 41,6 м³ применяется как сохранение основных габаритных размеров, так и изменение размеров камеры коксования с увеличение ее ширины до 450 мм и уменьшением ее высоты до 6650 мм.

Одним из важнейших преимуществ увеличения ширины камер коксования является возможность снижения выбросов газов и пыли при загрузке шихты и выдаче кокса из печей за счет уменьшения количества выдач печей при той же производительности. Ширина камер 450 мм является более предпочтительной, чем 410 мм [5].

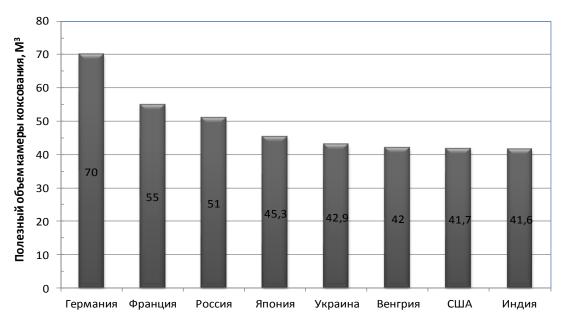


Рисунок 1 – Страны, использующие большегрузные коксовые батареи

Увеличение ширины камеры коксования имеет следующие преимущества:

- при одинаковых условиях коксования температура в загрузке поднимается медленнее, т.е. скорость коксования становится меньше, что положительно сказывается на качестве кокса;
- величина внутреннего давления повышается пропорционально квадрату скорости коксования, т.е. с увеличением ширины камеры внутреннее давление снижается;
- усадка коксового пирога пропорциональна ширине и, следовательно, с увеличением ширины отход боковой поверхности пирога от стен камеры увеличивается, что способствует снижению усилий при выдаче кокса, а это, в свою очередь, оказывает положительное влияние на срок службы батареи;
- содержание NO_x в дымовом газе снижается, так как конусность камер можно уменьшить и, благодаря этому, снизить общий уровень и перепад температур между коксовой и машинной сторонами.

Результаты работы большегрузных батарей показали, что увеличение ширины камер в целях повышения производительности и экономической эффективности, с точки зрения эксплуатации печей, оценивается специалистами выше ожидаемой. Длина камер коксования определяется обеспечением нормальных условий загрузки угольной шихты и выдачи кокса с учетом необходимого усилия анкерного обжатия, прочности кладки обогревательного простенка и свойств огнеупоров. Поскольку нет методики расчета максимально возможной длины печной камеры, этот параметр устанавливается только практически [6].

Предусматриваемые в проектах новых коксовых батарей увеличение ширины камер коксования и связанное с этим удлинение периода коксова-

ния, а также уменьшение толщины греющих стен коксовых печей, применение высокотеплопроводных огнеупоров позволят снизить температуру в отопительных каналах и свести к минимуму образование «термических» оксидов азота, что приводит к сокращению вредного воздействия коксохимии на окружающую среду.

Строительство батарей большой мощности позволяет вывести из эксплуатации более мелкие батареи, наносящие большой экологический ущерб. Это позволит уменьшить число технологических операций в единицу времени и общее число источников выбросов, а как следствие, снизить объем выбросов в атмосферу [7].

Библиографический список

1. Кауфман, А.А. Теория и практика современных процессов коксования [Текст] / А.А. Кауфман, В.Д. Глянченко, С.А. Косогоров. - Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2005. - 61 с.

- 2. Высокотемпературное коксование [Электронный ресурс]: Режим доступа: https://studfiles.net/preview/1771216/page:5/ Дата обращения: 03.03.2020.
- 3. Лейбович, Р.Е. Технология коксохимического производства [Текст] / Р.Е. Лейбович, Е.И. Яковлев, А.Б. Филатов. М.: Металлургия, 1982.- 360 с.
- 4. Химическая энциклопедия «CHEMPORT.RU» Коксование угля [Электронный ресурс]: Режим доступа: https://ribalych.ru/2014/03/31/kak-proisxodit-koksovanie-uglya/ Дата обращения: 03.03.2020.
- 5. Новые технологии коксования углей [Электронный ресурс]: Режим доступа: https://metallurgist.pro/novye-tehnologii-koksovaniya-ugley/ Дата обращения: 03.03.2020.
- 6. Сухоруков, В.И. Научные основы совершенствования техники и технологии производства кокса / В.И. Сухоруков.- Екатеринбург: ВУХИН, 1999. 393 с.
- 7. Процесс коксования [Электронный ресурс]:.- Режим доступа: http://metalspace.ru/education-career/osnovy-metallurgii/koks/1606-protsess-kok sovaniya.html Дата обращения: 03.03.2020.

СОДЕРЖАНИЕ

І ЕСТЕСТВЕННЫЕ НАУКИ	2
СТРУКТУРА РЕЛЬСА ПОД БЕЛЫМ СЛОЕМ Жаворонкова Е.Ю	3
ИСПОЛЬЗОВАНИЕ МАТЕМАТИЧЕСКИХ МЕТОДОВ В МЕНЕДЖМЕНТЕ Исмаилов Ф.А.	6
ПРИЛОЖЕНИЕ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ В ПСИХОЛОГИИ Кустова А. Д	9
ВЛИЯНИЕ РАСТВОРИТЕЛЯ НА РЕАКЦИЮ НИТРАТА ЦЕЛЛЮЛОЗЫ С ХЛОРИДОМ ФОСФОРА(V) Мадякина А.М., Сабирова Д.И., Романова С.М	
ИССЛЕДОВАНИЕ ХИМИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ МЕЖДУ АЗОТНОКИСЛЫМИ ЭФИРАМИ ЦЕЛЛЮЛОЗЫ И ПРОИЗВОДНЫМ ИМИДАЗОЛА Сабирова Д.И., Мадякина А.М.	
ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКИХ МЕТОДОВ В ЭКОНОМИКЕ Телугунов Д.К.	20
АНАЛИЗ НАСЕЛЕНИЯ НАШЕЙ СТРАНЫ, ИМЕЮЩЕГО БОЛЕЗНИ ОРГАНОВ ДЫХАНИЯ, С ИСПОЛЬЗОВАНИЕМ АППАРАТА МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ Чайкина А.В.	23
ИНТЕГРАЛЫ В ЭКОНОМИКЕ Яновская А.А.	27
ФОРМИРОВАНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ УМЕНИЙ ОБУЧАЮЩИХСЯ НА УРОКАХ ХИМИИ ПОСРЕДСТВОМ ПРОБЛЕМНОГО ОБУЧЕНИЯ Спиридонова Е.Б.	30
РАСЧЁТ НАПРЯЖЕНИЯ ПРОБОЯ В ХИМИЧЕСКОМ РЕАКТОРЕ С КОНДЕНСАТОРОМ ПОДВЕДЁННОЙ ИЗВНЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ Зайцев Н.С., Бендре Ю.В., Лежава С.А	33
II ПЕРСПЕКТИВНЫЕ ТЕХНОЛОГИИ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ	37
СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИЧЕСКИХ СХЕМ ПРОВЕДЕНИЯ ВЫРАБОТОК КОМБАЙНАМИ НЕПРЕРЫВНОГО ДЕЙСТВИЯ Бушуев К.И., Розум И.Г.	37
ТЕХНОЛОГИЯ ОТРАБОТКИ УГОЛЬНЫХ ПЛАСТОВ ЮЖНОГО КУЗБАССА, СКЛОННЫХ К ВНЕЗАПНЫМ ВЫБРОСАМ УГЛЯ, ПОРОДЫ И ГАЗА Крестьянинов А.В., Никитина А.М., Риб С.В., Борзых Д.М	42
СПОСОБЫ И СРЕДСТВА ПРОГНОЗА И ПРЕДОТВРАЩЕНИЯ ВНЕЗАПНЫХ ВЫБРОСОВ УГЛЯ И ГАЗА ПРИ ВЕДЕНИИ ОЧИСТНЫХ РАБОТ В УСЛОВИЯХ ШАХТ ЮЖНОГО КУЗБАССА	
Недосеков Д.А., Никитина А.М., Риб С.В	46

ИССЛЕДОВАНИЕ СОСТОЯНИЯ КАЧЕСТВА АТМОСФЕРНОГО ВОЗДУХА ПО СОСТАВУ СНЕЖНОГО ПОКРОВА НА ООО «ШАХТА ЕСАУЛЬСКАЯ»	
Онюшкина А.А	
УВЕЛИЧЕНИЕ ТЕМПОВ ПРОВЕДЕНИЯ ПОДГОТОВИТЕЛЬНЫХ ВЫРАБОТОК НА ВЫСОКОГАЗОНОСНЫХ УГОЛЬНЫХ ПЛАСТАХ Салманова Е.А., Никитина А.М., Риб С.В.	
РАЗРАБОТКА ТЕХНИЧЕСКИХ РЕШЕНИЙ ПО ОБЕСПЕЧЕНИЮ ПЫЛЕВЗРЫВОБЕЗОПАСНОГО СОСТОЯНИЯ ГОРНЫХ ВЫРАБОТОК УГОЛЬНЫХ ШАХТ Секингер Н.Ю., Никитина А.М., Риб С.В., Коряга М.Г	
ОЦЕНКА ВЛИЯНИЯ РАЗРЕЗА ООО «БУНГУРСКИЙ - СЕВЕРНЫЙ» НА АТМОСФЕРНЫЙ ВОЗДУХ В РАДИУСЕ ОДНОГО КИЛОМЕТРА Шарипова Н.В., Богданова Я.А.	
АКТУАЛЬНОСТЬ ФОРМИРОВАНИЯ ПРАКТИКИ УПРАВЛЕНИЯ СПРОСОМ НА ЭЛЕКТРОЭНЕРГИЮ Ковалев Д.С.	
КОРОННЫЙ РАЗРЯД Сухоплюев А.С., Фесенко А.Е	
АНАЛИЗ ТЕНДЕНЦИИ ПРИМЕНЕНИЯ ГИДРАВЛИЧЕСКИХ ЭКСКАВАТОРОВ НА ОТКРТЫТЫХ ГОРНЫХ РАБОТАХ И ПРИМЕНЕНИЕ ОТЕЧЕСТВЕННЫХ МАШИН Попроцкий Ю.Н.	80
ПОСТОЯННЫЙ И ПЕРЕМЕННЫЙ ТОК В НАШЕ ВРЕМЯ Сухоплюев А.С., Фесенко А.Е	
АСИНХРОННЫЙ ДВИГАТЕЛЬ С ЧАСТОТНЫМ РЕГУЛИРОВАНИЕМ Зайцев П.К., Курдюков М.О	86
НЕКОТОРЫЕ ПРОБЛЕМЫ РАЗВИТИЯ УГОЛЬНОЙ ПРОМЫШЛЕННОСТИ В КУЗБАССЕ Стеблюк П.В., Усов С.С.	89
МОДЕРНИЗАЦИЯ МЕХАНИЗИРОВАННОГО ОЧИСТНОГО КОМПЛЕКСА В УСЛОВИЯХ ШАХТЫ «БОЛЬШЕВИК» Измалков В.А	
ЛОКАЦИЯ ОЧАГОВ ПОДЗЕМНЫХ ПОЖАРОВ ПО ВЫДЕЛЕНИЮ РАДОНА Гринин Д.А., Лобанова О.О	
РАЗРАБОТКА ПЫЛЕВЗРЫВОЗАЩИТНЫХ МЕРОПРИЯТИЙ ДЛЯ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ПЕРСОНАЛА ПРИ ПОДЗЕМНОЙ РАЗРАБОТКЕ УГ ОЛЬНЫХ МЕСТОРОЖДЕНИЙ Иващенко К.Ф., Сураев С.О.	101
РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ ДЕГАЗАЦИИ УГОЛЬНОГО ПЛАСТА СКВАЖИНАМИ НАПРАВЛЕННОГО БУРЕНИЯ Кознова О А	106

ЗА СЧЕТ РЕМОНТА И ВОССТАНОВЛЕНИЯ ГОРНЫХ ВЫРАБОТОК В ЗОНАХ ВЛИЯНИЯ ДИЗЪЮНКТИВНЫХ НАРУШЕНИЙ	
Б ЗОПАЛ БЛИЛНИЛ ДИЗВЮПКТИВПВІЛ ПАРУШЕНИИ Кузнецов А.А	111
РАЗРАБОТКА ТЕХНОЛОГИЧЕСКИХ РЕШЕНИЙ ПО ОГРАНИЧЕНИЮ ДВИЖЕНИЯ ВОЗДУХА В ВЫРАБОТАННОМ ПРОСТРАНСТВЕ ПУТЁМ ВОЗВЕДЕНИЯ ПЕННЫХ БАРЬЕРОВ Моисеев А.А.	115
ОБОСНОВАНИЕ И РАЗРАБОТКА ТЕХНИКО - ТЕХНОЛОГИЧЕСКИХ РЕШЕНИЙ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОЙ ОТРАБОТКИ ЗАЛЕЖЕЙ, СКЛОННЫХ К ГОРНЫМ УДАРАМ НА БОЛЬШИХ ГЛУБИНАХ Ушаков М.Ю., Тельнов Ю.В.	120
ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ПРОВЕТРИВАНИЯ И ГАЗОУПРАВЛЕНИЯ ПРИ ОТРАБОТКЕ МОЩНЫХ ПЛАСТОВ КОРОТКИМИ ЗАБОЯМИ Фролов Ю.С.	
РАЗРАБОТКА ТЕХНОЛОГИЧЕСКИХ РЕШЕНИЙ ПО ПЕРЕХОДУ КОМПЛЕКСНО-МЕХАНИЗИРОВАННОГО ЗАБОЯ ПЕРЕДОВЫХ ВЫРАБОТОК БЕЗ СНИЖЕНИЯ НАГРУЗКИ НА ОЧИСТНОЙ ЗАБОЙ Шамсудинов В.Н., Ногих А.А.	129
АНАЛИЗ ПРИЧИН ВОЗНИКНОВЕНИЯ И РАЗРАБОТКА РЕКОМЕНДАЦИЙ ПО ПРОФИЛАКТИКЕ И ТУШЕНИЮ ЭНДОГЕННЫХ ПОЖАРОВ НА ШАХТАХ ЮГА КУЗБАССА Моисеев А.А., Никитина А.М., Риб С.В.	
ВЕНТИЛЯЦИЯ ГЛУБОКИХ КАРЬЕРОВ В УСЛОВИЯХ КРАЙНЕГО СЕВЕРА Павздерин К.А., Герлинская С.Д.	138
ДИСТАНЦИОННОЕ УПРАВЛЕНИЕ ГОРНО-ШАХТНЫМ ОБОРУДОВАНИЕМ Садов Д.В., Дубина Е.М	143
ПРОБЛЕМЫ ПРОПУСКНОЙ СПОСОБНОСТИ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ УГОЛЬНОГО ПРЕДПРИЯТИЯ Курдюков М.О.	149
ОСОБЕННОСТИ ТЕХНОЛОГИИ ВСКРЫТИЯ УЧАСТКА «ЕРУНАКОВСКИЙ БЕРЕГОВОЙ» Буткевич А.А., Матвеев А.В., Лобанова О.О	151
ВЫБОР И ОБОСНОВАНИЕ СИСТЕМЫ РАЗРАБОТКИ В УСЛОВИЯХ ГЕОЛОГИЧЕСКОГО НАРУШЕНИЯ УГОЛЬНОГО ПЛАСТА Шарков Н.А	
АНАЛИЗ СОСТОЯНИЯ ДЕЛ В КЕМЕРОВСКОЙ ОБЛАСТИ В ЧАСТИ ПРОВЕДЕНИЯ РЕКУЛЬТИВАЦИИ НАРУШЕННЫХ ЗЕМЕЛЬ Мартыненков С.Е., Матвеев А.В., Лобанова О.О.	
ПРОБЛЕМЫ ПРИМЕНЯЕМЫХ ТЕХНОЛОГИЙ РЕКУЛЬТИВАЦИИ ГОРНЫХ РАБОТ	
Highwap H A Haffahapa O O	162

АНАЛИЗ РОССИИСКОГО ЗАКОНОДАТЕЛЬСТВА В ОБЛАСТИ РЕКУЛЬТИВАЦИИ ЗЕМЕЛЬ	
Шарков Н.А., Матвеев А.В., Лобанова О.О.	166
АНАЛИЗ СТАТЬИ 8.7 КОДЕКСА РОССИЙСКОЙ ФЕДЕРАЦИИ ОБ АДМИНИСТРАТИВНЫХ ПРАВОНАРУШЕНИЯХ ПО РЕКУЛЬТИВАЦИИ ЗЕМЕЛЬ	
Жилин Е.А., Матвеев А.В., Лобанова О.О.	170
ОБЗОР СУЩЕСТВУЮЩИХ СПОСОБОВ РЕКУЛЬТИВАЦИИ ЗЕМЕЛЬ ЗА РУБЕЖОМ Буткевич А.А., Матвеев А.В., Лобанова О.О	17/
ОБЗОР ПРОГРАММНО-ТЕХНИЧЕСКОГО КОМПЛЕКСА ДЛЯ ПРОЕКТИРОВАНИЯ БВР Шарков Н.А., Тарасов А.Г.	
ОБОСНОВАНИЕ ТРЕТЬЕГО ЭТАПА ОТРАБОТКИ ЗАПАСОВ В ГРАНИЦАХ ЛИЦЕНЗИИ 11672 КЕМ СО ВТОРОЙ ПО ВОСЬМУЮ РАЗВЕДОЧНЫЕ ЛИНИИ Лорнхарт Д.С., Матвеев А.В., Лобанова О.О	
СПОСОБ УСКОРЕННОЙ МЕХАНОГИДРАВЛИЧЕСКОЙ РЕКУЛЬТИВАЦИИ ОТКРЫТЫХ ГОРНЫХ ВЫРАБОТОК Матвеев А.В., Гинеборг А.П., Сенкус Вал.В.	184
РЕКУЛЬТИВАЦИЯ ОТКРЫХ ГОРНЫХ ВЫРАБОТОК УГОЛЬНЫХ МЕСТОРОЖДЕНИЙ Матвеев А.В., Гинеборг А.П., Сенкус Вал.В	188
III МЕТАЛЛУРГИЧЕСКИЕ ПРОЦЕССЫ, ТЕХНОЛОГИИ, МАТЕРИАЛЫ И ОБОРУДОВАНИЕ	
ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ВЫДЕЛЕНИЯ УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ ИЗ ТЕХНОГЕННОГО ЗОЛОСОДЕРЖАЩЕГО СЫРЬЯ Семеновых М.А., Шеховцов В.В., Гафаров Р.Е., Волокитин О.Г	194
ОБОСНОВАНИЕ ТЕХНИЧЕСКИХ РЕШЕНИЙ ДЛЯ ПРОЕКТИРОВАНИЯ СОВРЕМЕННОГО ВЫСОКОАМПЕРНОГО ЭЛЕКТРОЛИЗЕРА (500 – 600 кА) Шагиев Р.Р., Шагиев Э.Р.	
ОЦЕНКА МИРОВОГО ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ АЛЮМИНИЯ Шагиев Р.Р., Шагиев Э.Р.	
АНАЛИЗ СОВРЕМЕННОГО СОСТОЯНИЯ ТЕХНОЛОГИИ ЭЛЕКТРОЛИЗНОГО ПРОИЗВОДСТВА АЛЮМИНИЯ Шагиев Р.Р., Шагиев Э.Р.	207
КОКСОВАНИЕ В БОЛЬШЕГРУЗНОЙ КОКСОВОЙ БАТАРЕЕ: ПРЕИМУЩЕСТВА УВЕЛИЧЕНИЯ ОБЪЕМА КАМЕРЫ Филенкова Т.А., Новиков М.В., Литвинов А.П.	 21 1
РАЗРАБОТКА ТЕХНИЧЕСКИХ РЕШЕНИЙ ПО ПЕРЕВОДУ ПЕЧЕЙ ОБЖИГА ИЗВЕСТНЯКА С ЖИДКОГО НА УГОЛЬНОЕ ТОПЛИВО Коряковцева О.В.	
СПОСОБЫ МЕТАЛЛОТЕРМИЧЕСКОГО СИНТЕЗА	
A words on A. F.	210

СРАВНИТЕЛЬНЫЙ АНАЛИЗ СПОСОБОВ УЛАВЛИВАНИЯ АММИАКА ИЗ КОКСОВОГО ГАЗА Литвинов А.П	224
ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ И ПЕРСПЕКТИВЫ УСТК НА АО «ЕВРАЗ ЗСМК» Новиков М.В.	
НЕТРАДИЦИОННОЕ РЕШЕНИЕ ПОЛУЧЕНИЯ ШТРИПСОВОЙ ЛЕНТЫ ПОД ПОРОШКОВУЮ ПРОВОЛОКУ Густова Д.О., Иванкина И.В.	
ИСПОЛЬЗОВАНИЕ ТЕХНОЛОГИЙ НЕПРЕРЫВНОГО ПРЕССОВАНИЯ И ВОЛОЧЕНИЯ ДЛЯ ВЗАИМОВЫГОДНОГО ПАРТНЕРСТВА ОАО "НКАЗ" И АО "ЕВРАЗ ЗСМК" И Ванкина И. В., Густова Д. О., Вахроломеев В.А	235
СНИЖЕНИЕ ЭНЕРГОЗАТРАТ ПРИ ПРОИЗВОДСТВЕ ШАРОВ В УСЛОВИЯХ АО «ЕВРАЗ ЗСМК» Курбангалеев Д.К	
УВЕЛИЧЕНИЕ ПРОИЗВОДСТВА ШАРОВ В УСЛОВИЯХ АО «ЕВРАЗ ЗСМК» Курбангалеев Д.К	
ПУТИ ПОВЫШЕНИЯ КАЧЕСТВА ТРАМВАЙНЫХ РЕЛЬСОВ Чудов А.Е., Хузин А.М.	240
УЛУЧШЕНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ СПЛАВА АК9пч МОДИФИЦИРОВАНИЕМ Зеневич А.В., Соколов Б.М., Ознобихина Н.В., Михно А.Р., Сычев А.А.	249
АНАЛИЗ ТЕХНОЛОГИЧЕСКИХ ФАКТОРОВ ОПРЕДЕЛЯЮЩИХ КАЧЕСТВО (СТОЙКСТЬ) СЕКЦИИ ПРЯМОЙ ГАЗОСБОРНОГО КОЛОКОЛА ЭЛЕКТРОЛИЗЕРА Соколов Б.М., Ознобихина Н.В., Михно А.Р.,	
Белов Д.Е., Зеневич А.В. СОВРЕМЕННЫЕ МЕТОДЫ И СИСТЕМЫ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ СВАРНЫХ ИЗДЕЛИЙ Прохоренко Д.А., Масалова Д.А., Гулидов А.А., Соколов Б.М., Ознобихина Н.В.	
ИЗМЕНЕНИЕ ИЗНОСОСТОЙКОСТИ И МИКРОТВЕРДОСТИ ДОЭВТЕКТИЧЕСКОГО СИЛУМИНА, ОБЛУЧЕННОГО ИМПУЛЬСНЫМ ЭЛЕКТРОННЫМ ПУЧКОМ Абатурова А.А., Шляров В.В., Петрикова Е.А., Тересов А.Д	263
ИССЛЕДОВАНИЯ МИКРОСТРУКТУРЫ ОБРАЗЦОВ РЕЛЬСОВОЙ СТАЛИ ПОСЛЕ СВАРКИ НА МАШИНЕ МС 20.08 Азаренков И.А., Алимарданов П.Э	
ИССЛЕДОВАНИЕ МЕТАЛЛА, НАПЛАВЛЕННОГО ПОД ФЛЮСОМ, ИЗГОТОВЛЕННЫМ НА ОСНОВЕ ОТХОДОВ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА	
A HOURING K () MINVIO A P HACTHRICAD A R	270