Министерство науки и высшего образования Российской Федерации

ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Перспективы развития технологии переработки углеводородных и минеральных ресурсов

Материалы X Всероссийской научно-практической конференции с международным участием

(Иркутск, 22-24 апреля 2020 г.)

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ПЕРСПЕКТИВЫ РАЗВИТИЯ ТЕХНОЛОГИИ ПЕРЕРАБОТКИ УГЛЕВОДОРОДНЫХ И МИНЕРАЛЬНЫХ РЕСУРСОВ

Материалы
X Всероссийской научно-практической конференции с международным участием

ИЗДАТЕЛЬСТВО

Иркутского национального исследовательского Технического университета 2020 УДК 658.52 ББК 65.291.8.4 П 27

Рекомендовано к изданию редакционно-издательским советом ИРНИТУ

Перспективы развития технологии переработки углеводородных и минеральных ресурсов: мат-лы X Всерос. науч.-практ. конф. с междунар. участием (Иркутск, 22–24 апреля 2020 г.). – Иркутск: Изд-во ИРНИТУ, 2020 – 294 с.

Редакционная коллегия:

Е.Ю. Семенов - председатель проректор по научной работе и инновационной деятельности

Е.А. Анциферов - зам. председателядиректор института высоких технологий

А.Н. Чеснокова - зам. директора института высоких технологий по научной работе

С.Г. Дьячкова - зав. кафедрой химической технологии

Н.В. Немчинова - зав. кафедрой металлургии цветных металлов

В.В. Ёлшин - зав. кафедрой автоматизации и управления

П.А. Лонцих - профессор кафедры автоматизации и управления

В.Ю. Конюхов - профессор кафедры автоматизации и управления

С.И. Половнева - доцент кафедры автоматизации и управления

Ю.Э. Голодков - доцент кафедры автоматизации и управления

С.С. Бельский - доцент кафедры металлургии цветных металлов

Т.А. Подгорбунская - доцент кафедры химической технологии

Технический редактор:

С.А.Мельник - программист кафедры автоматизации и управления

Печатается с файлов, предоставленных авторами

© ФГБОУ ВО «ИРНИТУ», 2020

СОДЕРЖАНИЕ

СЕКЦИЯ №1. Прогрессивные технологии и физико-химические основы повышения эффективности металлургических производств

Св.С. Квон, В.Ю. Куликов, Д.Р. Аубакиров, Е.П. Щербакова, А.М.
Достаева. Исследование структуры белого чугуна с повышенным
содержанием никеля и ванадия10
Н.В. Немчинова, В.В. Хоанг, А.А. Володькина. Изучение структуры и
химического состава образцов кремния металлографическим методом
исследования13
А.Е. Патрушов, Н.В. Немчинова, В.С. Вологин. Разработка технологии
пирометаллургической переработки пыли электросталеплавильного
производства с целью извлечения железа и цинка17
К. Болсулы, Е.К. Кызылбаев. Поведение серы в доменной печи и
условия получения малосернистого чугуна20
А.Е. Аникин, Г.В. Галевский, В.В. Руднева, Э.Р. Шагиев. Исследование
физико-химических характеристик прокатной окалины и
обезвоженного шлама газоочистки кислородно-конвертерного
производства
Г.В. Галевский, В.В. Руднева. Металлургический кластер Кузбасса:
анализ состояния и перспективы развития26
Г.В. Галевский, В.В. Руднева, С.Г. Галевский, А.Е. Аникин, Э.Р. Шагиев.
Современное состояние оборудования и технологии производства
обожженных анодов для алюминиевых электролизеров29
Г.В. Галевский, О.А. Полях, В.В. Руднева, А.Е. Аникин. Производство и
применение молибдена и его сплавов32
А. Абдусаломов, А.В. Никаноров. Использование компьютерных
тренажеров для обучения студентов основам металлургических
процессов
П.С. Гусев, А.В. Никаноров. Пирометаллургическая переработка
материалов медного и никелевого производства содержащих
драгоценные металлы
Е.В. Скворцов. Роль внепечной обработки в технологии производства
литых износостойких сплавов
Н.П. Ермаченко. Исследование материала для очистки
технологических сред
А.С. Вологин, В.С. Вологин, А.В. Никаноров. Снижение расхода
электроэнергии на миксерах ЛО-145
Д.И. Тюменцев, Н.В. Немчинова, А.А. Володькина. Конструкция
кронштейнов анододержателей алюминиевых электролизеров48
Д.С. Сидоров, А.Н. Баранов. Интенсификация выщелачивания цветных
металлов с применением электрохимической обработки шелочи51

3.Х. Гайбуллаева, У.Мирсаидов. Кинетика реакции выщелачивания
свинца и цинка из полиметаллических концентратов месторождения
Кони Мансур (Таджикистан)53
И.Д. Матвеенко, М.Ю. Кузьмина. Совершенствование огнеупорных
материалов для футеровки литейных агрегатов алюминиевого
производства56
И.Д. Тетерин, М.Ю. Кузьмина. Химическое оксидирование
алюминиевых изделий в электролитах, не содержащих хромовый
ангидрид60
А.Шарифов, З.Х.Гайбуллаева, Ф.Б.Хамроев, Г.Г.Шодиев, Д.Субхонов.
Безотходная технология газификации угля62
О.В. Лазарева, А.А. Пляскина. Оценка технологических факторов и
сред, влияющих на коррозионные процессы при автоклавном
выщелачивании65
М.П. Кузьмин, В.С. Кабарбо. Получение силуминов методом
индукционной плавки кремнийсодержащей шихты под слоем
криолита68
М.П. Кузьмин, В.С. Кабарбо. Оценка устойчивости интерметаллидов,
образующихся в алюминии и сплавах на его основе71
М.П. Кузьмин, И.Д. Тетерин. Особенности производства чушек первичных
силуминов, модифицированных стронцием74
Р.М. Собенников, Т.С. Минеева. Преимущества использования роллер-
пресса при рудоподготовке применительно к технологии кучного
выщелачивания золотосодержащих руд77
А.А. Шипнигов, Т.С. Минеева. Кучное выщелачивание золотосодержащих
руд80
А.А. Ашуров, Х.А. Мирпочаев, Р.С. Махкамбаев, А.Х. Сафиев, Дж.Р. Рузиев.
Опытно-промышленная очистка отработанной футеровки
электролизёров
А.А. Ашуров, А.Х. Сафиев, И.С. Шоев, Дж.Р. Рузиев. Переработка
отпаботанной футеповки электполизепов волно-шелочным
отработанной футеровки электролизеров водно-щелочным
способом85
способом
способом

Ш. Кабир, Х. Сафиев, Г. Аминджони, Н.А. Наимов, Н.П. Мухамедиев, Ш.Б. Назаров. Переработка флотационного мусковитового
концентрата способом сульфатизации95
Х.А. Мирпочаев, Ш. Кабир, Х. Сафиев, Н.Х. Раджабов, Н.П. Мухамедиев.
Однониппельный анодный токоподвод электролизёра для
производства алюминия98
И.Ш. Ахмадшоев, Н.П. Мухамедиев, А.Х. Сафиев, Р.С. Рафиев, Дж.Р.
Рузиев. Технологии производства и опытно-промышленные
испытания литейных флюсов101
А.С. Шнырова, К.Е. Алексеенко, М.В. Константинова. Характеристики
минерального сырья, используемого в качестве фильтрующих
материалов103
Н.В. Иринчинова, В.И. Дударев, Д.И. Дударев. Технологическая схема
сорбционного извлечения никеля из производственных растворов106
Р.Р. Рахматулин, А.Н. Баранов. Определение достоверности измерения
скорости коррозии металлов в снежном покрове с применением
коррозиметра108
А.С. Вологин, А.А. Тютрин. Проблема образования отходов при
производстве металлургического кремния111
Е.С. Лебедев, А.А. Тютрин. Основные технико-экономические
показатели производства алюминия113
М.Н. Рыбина, Н.В. Немчинова, Н.Н. Зобнин, А.А. Володькина. Подбор
связующего вещества для окомкования шихты в производстве
технического кремния116
А.А. Козлов, Н.В. Немчинова. Угольно-сорбционная технология
извлечения золота из сернокислых растворов, содержащих медь и
железо
А.А. Васильев, А.В. Аксенов, Г.Т. Рахимов. Выбор рациональной
технологии извлечения золота на основании изученного
вещественного состава руды122
А.Э. Савелов, А.А. Васильев, А.В. Аксенов. Выбор рациональной
технологии извлечения серебра на основании изученного
вещественного состава руды125
Е.Ю. Леонов, Д. Е. Остапчук. Повышение эффективности
модифицирования металлов и сплавов128
СЕКЦИЯ № 2. Актуальные проблемы химии и химической технологии
А.П. Белькович, О.В. Лебедева. Мембраны на основе комплекса
поливинилтриазол/ дифенилсульфокислота132

Ю. А. Верхозина, Ю.Н. Пожидаев. Мембраны на основе
функциональных полимеров триазола и винилсульфоновой
кислоты
Ж.Н. Артемьева, В.Э. Соболева, С.Г. Дьячкова. Топлива маловязкие
судовые, отвечающие требованиям тр тс 013/2011 в редакции 2020
года
Ю.А. Болотова, Е.Э. Урбасова, А.А. Чайка. Моделирование работы
газофракционирующей установки139
Д.С. Белоусов, Е.В. Янчуковская. Математическая модель и алгоритм
расчета реактора идеального перемешивания142
А.А. Ганина, Е.Б. Ковалева, Е.О. Рудомилова, С.Г. Дьячкова. Вовлечение
в топливные композиции побочных продуктов производства
бутиловых спиртов
Н.Е. Байбородин, С.В. Бахвалов, Е.А. Голиков, Е.А. Осипова, Е.В.
Прудникова. Разработка настольного приложения на С# для
дополнительных хроматографических расчетов147
В.Г. Федосеева, Е.А. Верочкина, Н.В. Вчисло. Синтез 2-тиозамещённых
ениналей методом альдольной конденсации150
А.В. Мартынюк, Е.В. Янчуковская. Выбор варианта транспортировки газа в
зависимости от расстояния транспортировки и удельных затрат
Capex
Н.А. Горяшин, И.О. Дошлов. Получение связующих материалов на основе
нефтяных остатков и отходов кремниевого производства
Н.А. Горяшин, М.С. Ковалев. Возможность внедрения нефтесодержащих
материалов в алюминиевую и электродную промышленность157
А.А. Турусин, Н.А. Горяшин, И.О. Дошлов. Получение нанодобавок
электродуговым методом для производства композиционных материалов159
А.В. Скубиева, М.А.Оборина. Минеральное кальций-магниевое сырьё
иркутской области в технологии керамических изделий
А.А. Турусин, О.В. Белозерова. Исследование бензина АИ-92 ООО
«Крайснефть»
Р.Т. Усманов, Д.С. Чепенко, А.С. Поздняков. Синтез фуллеренсодержащей
сажи электродуговым методом
Т.В. Будько, Т.Ч. Нгуен, А.А. Яковлева. Применимость уравнения Ленгмюра
для характеристики барьерных свойств песков169
И.А. Ярощук. Изучение физико-химических характеристик монгольских
нефтей172
Б.А. Ульянов, И.А. Семёнов, Д.А. Дубровский. Опыт реконструкции
установки ректификации метиламинов
Н.П. Гоненко, Т.В. Раскулова, Ю.Н. Пожидаев. Присадки к дизельным
топливам на основе побочных продуктов нефтехимических
производств

Е.А. Манаенкова, О.В. Белозерова. Эфиры кукурузного масла в
химмотологии
М.А. Савина, А.Ю. Сотников, А.В. Скубиева, Е.В. Рудякова. Сравнение
углеводородного состава бензинов отечественных и японских
производителей
А.Н. Чеснокова, Т.Д. Жамсаранжапова, С.А. Закарчевский, А.М. Оносова.
Исследование композитных протонпроводящих мембран для топливных
элементов
Т.И. Черненко, Т.А. Подгорбунская, О.В. Белозерова. Получение сорбента из
отходов лесозаготовительного комплекса188
А.О. Монтошкинова, Т.А. Подгорбунская. Физико-химические свойства
отходов лесопереработки189
А.В. Скубиева, М.А. Оборина. Источники минерального
высокоглиноземистого сырья в иркутской области191
В.К. Левшаков. С.А. Мельник. Пути увеличения количества реагирующего
вещества в микропробирке194
С.В. Садловский, Е.А. Анциферов, А.А. Яковлева. Изучение механизмов
защиты металлов от коррозии пленкообразующими агентами на основе
стирол-акриловых латексов методом импедансной спектроскопии197
СЕКЦИЯ № 3. Интенсификация, контроль и автоматизация
технологических процессов
Т.Р. Мамин, С.А. Богидаев, С.И. Половнева. Исследование удельной поверхности утяжелителей буровых растворов
позиционного регулирования на базе приборов ОВЕН»
М. К. Гузин, Д. А. Бегунов. Опыт образования за рубежом
И.В. Клещенков, С.И. Половнева. Освоение профессиональных
компетенций по метрологическому обеспечению производствана АО
«САЯНСКХИМПЛАСТ»
Ю.Э. Голодков, Е.В. Федяев. Опыт импортозамещения
автоматизированных систем управления технологическим
оборудованием в пищевой промышленности216
Д.С. Россов, П.Р. Ершов. Разработка учебного стенда «Облачные
технологии OWEN CLOUD»
А.А. Подкорытов, Е.А. Калашникова. Перспективы применения
нейронных сетей в технологических процессах
Е.А. Калашникова, А.А. Подкорытов. Перспективы использования
беспроводных технологий для автоматизации технологических
процессов

золота как объект автоматизации226
А.А. Герасимова, В.В. Ёлшин. Eplan electric P8 - среда разработки для
создания технических проектов автоматизации229
С.С. Макаров. Анализ автоматизированной системы управления
технологическим процессом в солодовом производстве231
А.А. Колодин, В.В. Ёлшин. Применение управления на основе
прогнозирующей модели в учебном стенде234
Д.Е. Тарасов, А.А. Колодин. Построение математической модели печи
учебного стенда238
А.Е. Овсюков, В.В. Елшин. Возможность применения нейронных сетей
в задачах аналитического контроля и управления в процессах
цианистого выщелачивания242
С.И. Половнева, Д.А. Бегунов. Измерение и контроль параметров
качества и количества нефти в условиях ООО «Юрях-
нефтегазодобыча»245
Т.А. Джалилов, В.М. Салов. Перспективы использования
многоагентной технологии в процессе измельчения золотосодержащей
руды
СЕКЦИЯ № 4.Менеджмент систем качества
А.Э. Сапожникова, Л.И. Татарникова. Аутсорсинг в производственной
компании251
А.М. Колыванова, Н.П. Лонцих. Внедрение технологий бережливого
производства в организациях, оказывающих первичную медико-
производства в организациях, оказывающих первичную медико- санитарную помощь255
производства в организациях, оказывающих первичную медико- санитарную помощь
санитарную помощь255
санитарную помощь

Выводы

Исследованы химический, фазовый, гранулометрический составы и плотность прокатной окалины и обезвоженных шламов газоочистки кислородно-конвертерного цеха № 1 AO «ЕВРАЗ ЗСМК». Содержание общего железа в окалине составляет 73,3 %, в шламе – 41,2 %. При этом содержание FeO и Fe₂O₃ составляет в окалине 75,5 % и 20,9 %, в шламе 4,7 % и 53,7 %. Установлено, что в окалине на порядок ниже содержание серы и фосфора – 0,036 % и 0,019 % соответственно против 0,21 % и 0,15 % в шламе. Шлам содержит также 20,6 % СаО, 4,3 % общего углерода. Гранулометрические составы окалины и шлама существенно отличаются: содержание классов крупности +1,0 мм и -0,016 мм составляет в окалине 63,3 % и 0 %, в шламе – 14,8 % и 44,5 %. Истинная плотность окалины составляет 4,6-4,9 г/см³, шлама -3,5-5,0 г/см³. Полученные результаты целесообразность технологическую использования подтверждают мелкозернистой окалины и порошкообразного шлама в процессах металлизации, включающих их предварительное брикетирование в смеси с углеродистым восстановителем, например, буроугольным полукоксом, поставляемым в виде мелкозернистого продукта класса 0 - 3 мм.

УДК 669.01(075.8)

МЕТАЛЛУРГИЧЕСКИЙ КЛАСТЕР КУЗБАССА: АНАЛИЗ СОСТОЯНИЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ

Г.В. Галевский , В.В. Руднева 2

¹д.т.н., профессор, заведующий кафедрой металлургии цветных металлов и химической технологии ФГБОУ ВО «СибГИУ», г. Новокузнецк, e-mail: kafcmet@sibsiu.ru

 2 д.т.н., профессор, профессор кафедры металлургии цветных металлов и химической технологии ФГБОУ ВО «СибГИУ», г. Новокузнецк, e-mail: kafcmet@sibsiu.ru

Введение

Исторические традиции, рудная база, обеспечение национальных интересов, протяженность территории предопределили формирование и развитие в России трех металлургических кластеров: центрального, уральского и сибирского. Основу сибирского кластера составляет металлургия Кузбасса.

В структуре промышленного областного сектора металлургия занимает 2-е место после угледобычи и переработки с объемом 26,6 % от выручки ПС. Эти две отрасли обеспечивают общероссийские приоритеты видов Кемеровской области производстве важнейших В таких трамвайные промышленной продукции, как рельсы 100 магистральные рельсы – 65 %, уголь и угольный концентрат – 58,5 %, ферросилиций – 52,6 %, прокат – 10,7 %, сталь – 9,9 %. Металлургический комплекс включает семь предприятий и географически размещен в трех городах: Новокузнецк, Гурьевск, Юрга. Металлургической столицей Кузбасса является Новокузнецк. На территории города функционируют 4 металлургических предприятия, среди которых ЗСМК является безусловным лидером.

Характеристика металлургических производств и металлопродукции

АО «ЕВРАЗ Западно-Сибирский металлургический комбинат» - предприятие полного цикла, включает коксоаглодоменное, сталеплавильное, рельсовое и прокатное производства.

Коксохимическое производство комбината введено в 1963 году и ежегодно производит более 3,5 млн. т кокса, основным потребителем которого (более 80 %) является доменное производство.

В составе доменного производства функционируют 3 доменные печи с суммарным рабочим объемом 8000 м³. Производство чугуна составляет

6 - 6,1 млн. т.

Сталеплавильное производство включает 2 кислородноконвертерных цеха.

В кислородно-конвертерном цехе № 1 сталь выплавляется в трех конвертерах емкостью 160 т. Производительность цеха в 2018 г. составила 2057000 т стали, разливка стали осуществляется в изложницы. В кислородно-конвертерном цехе № 2 сталь выплавляется в двух конвертерах емкостью 350 т. Производительность цеха в 2018 г. составила 3919000 т стали. Разливка стали осуществляется в изложницы и на двух машинах непрерывного литья с получением заготовок сечением 150×150 мм, 150×200 мм, $200 (250) \times 1050-1750$ мм.

Рельсовое производство включает электросталеплавильный и рельсобалочный цехи.

Электросталеплавильный цех обеспечивает заготовкой рельсобалочный и шаропрокатные станы. Две современные дуговые электросталеплавильные печи мощностью 95 МВА работают по технологии с отсечкой печного шлака и оставлением части металла и печного шлака в печи, обеспечивают низкий расход электроэнергии, электродов и металлошихты. Выпускаемый из печи металл обрабатывается на двух агрегатах комплексной обработки стали «печь-ковш» и высокопроизводительном ковшевом вакууматоре. Подготовленная жидкая сталь разливается на двух блюмовых МНЛЗ. Цех обеспечивает производство 1,4 млн.т непрерывнолитой заготовки качественных и высококачественных сталей в год.

Рельсобалочный цех производит продукцию рельсового и строительного сортамента. Завершенная в 2013 году реконструкция

рельсобалочного цеха позволила производить в одном цехе все виды рельсов: магистральные, трамвайные, подкрановые, остряковые и рельсы для метрополитена. Рельсобалочный цех первым в России освоил технологию дифференцированной закалки и получил сертификат на дифференцированно-термоупрочнённые рельсы длиной до 100 метров. Эти повышенной износостойкостью обладают улучшенными характеристиками. Также возможности эксплуатационными прокатного стана позволяют производить продукцию строительного сортамента: балки, швеллеры, шпунт, квадратную и круглую заготовку. Объем производства около 1 млн. т проката в год.

Прокатное производство включает блюминг, непрерывный заготовочный стан, два непрерывных мелкосортных стана, непрерывный проволочный стан, шаропрокатный стан и ориентировано на производство строительного проката (арматура, балки, швеллеры, уголки и др.) в объемах до 4,2 млн. т в год.

АО «Гурьевский металлургический завод» - патриарх сибирской и Кузбасской металлургии — функционирует с 1816 г. сначала как производитель меди и серебра, а с 1840 г. — железа и его сплавов. Сталеплавильные мощности завода позволяют выпускать до 210 тысяч т стали в год в двух мартеновских печах. Сортопрокатное производство отличается от других аналогичных линейным станом, а шаропрокатная линия оборудована комплексами мощностью более 200 тысяч тонн в год. От 16 до 23 % минерального сырья в России и СНГ сегодня измельчается шарами, произведенными в Гурьевске.

АО «**Кузнецкие ферросплавы»** - предприятие введено в 1942 году иявляется одним из крупнейших в России производителей ферросилиция. В настоящее время на долю предприятия приходится 52% общероссийского производства ферросилиция и 100 % производства высококачественного уплотненного микрокремнезема. В 2011 году введен в строй "Юргинский ферросплавный завод" — филиал АО Кузнецкие ферросплавы» с четырьмя печными агрегатами и полным циклом - производством продукции и переработкой отходов.

ООО «Западно-Сибирский электрометаллургический завод» — запущен в эксплуатацию в 2014 году. На предприятии работают четыре руднотермические печи марок РКО-9МВА и РКО-8,5МВА. Мощность завода по выплавке высококачественного ферросиликомарганца с низким содержанием фосфора составляет 53 тыс. тонн в год. Основным потребителем продукции (75% от общего объема) является АО «ЕВРАЗ ЗСМК».

АО «РУСАЛ Новокузнецкий алюминиевый завод» - первая очередь введена в эксплуатацию в 1943 г., вторая — в 1961 г. В настоящее время завод функционирует в составе электролизного и литейного производств. Производство алюминия-сырца осуществляется на

электролизерах с верхним токоподводом, а также на электролизерах с предварительно обожженными анодами. Всего установлен 531 электролизер на 3-х сериях электролиза. Годовой объем производства алюминия-сырца составляет 210 тыс. тонн.

Основная продукция литейного производства — цилиндрические слитки и мелкая чушка от 6 до 22 кг. Порядка 70 % продукции составляют сплавы, в том числе многокомпонентные. На отечественный рынок и в страны СНГ поставляется порядка 52,7 % продукции завода.

Направления инновационного развития металлургического производства **Кузбасса**

В ближайших планах металлургических предприятий Кузбасса реконструкция и модернизация производства в следующих направлениях: в условиях АО «ЕВРАЗ ЗСМК» совершенствование производства рельсовой стали с целью повышения качества металлопродукции; освоение производства листовой металлопродукции на литейно-прокатном комплексе; длинномерных профилей волочением для использования в арматуры; технологии качестве контактной стыковой сварки дифференциально термоупрочненных железнодорожных длинномерные (до 800 м) плети; в условиях АО «РУСАЛ Новокузнецкий алюминиевый завод» - конверсия реализуемой АО «РУСАЛ Новокузнецк» электролизеров технологии установкой PA-167 С-8БМЭ «ЭкоСодерберг».

УДК669.21.8 (075.8)

СОВРЕМЕННОЕ СОСТОЯНИЕ ОБОРУДОВАНИЯ И ТЕХНОЛОГИИ ПРОИЗВОДСТВА ОБОЖЖЕННЫХ АНОДОВ ДЛЯ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ

Г.В. Галевский , В.В. Руднева , С.Г. Галевский , А.Е. Аникин , Э.Р. Шагиев

¹д.т.н., профессор, заведующий кафедрой металлургии цветных металлов и химической технологии ФГБОУ ВО «СибГИУ», г. Новокузнецк, e-mail: kafcmet@sibsiu.ru

²д.т.н., профессор, профессор кафедры металлургии цветных металлов и химической технологии ФГБОУ ВО «СибГИУ», г. Новокузнецк, e-mail: kafcmet@sibsiu.ru

³к.э.н., доцент кафедры экономики, учета и финансов ФГБОУ ВО «Санкт-Петербургский горный университет», г. <u>Санкт-Петербург</u>, e-mail: sgalevskii@gmail.com

⁴к.т.н., доцент кафедры металлургии цветных металлов и химической технологии ФГБОУ ВО «СибГИУ», г. Новокузнецк, e-mail: kafcmet@sibsiu.ru

⁵обучающийся гр. МЦМ-17, ИМиМ, ФГБОУ ВО «СибГИУ», г.