Министерство образования и науки Российской Федерации Сибирский государственный индустриальный университет

Посвящается 400-летию города Новокузнецка

МЕТАЛЛУРГИЯ: ТЕХНОЛОГИИ, ИННОВАЦИИ, КАЧЕСТВО

«Металлургия – 2017»

15 – 16 ноября 2017 г.

Труды XX Международной научно-практической конференции Часть 2

> Новокузнецк 2017

perature (LTT) materials[J]. Soldagem & Inspeção. 14 (1), 391 (2009).

- 12. CHENXizhang, HU Ke, YUAN Qibing. Microstructure and performance of WC reinforced Febased composite coating synthesized in-situ produced by laser cladding[J]. China Surface Engineering. 29 (04), 118 (2016).
- 13. SONG Jie, ZHANG Qingmao, LIN Xiaocong, LIAO Jianhong, Behavior of Fe-Based Alloy Coating Formed by Laser Cladding[J]. Chinese Journal of Lasers. **35** (05), 776 (2008).

УДК 661.665

ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ В КАРБИДООБРАЗУЮЩИХ СИСТЕМАХ Ti-C-H-N, Ti-O-C-H-N

Гарбузова А.К., Галевский Г.В., Руднева В.В.

Сибирский государственный индустриальный университет, г. Новокузнецк, Россия, kafcmet@sibsiu.ru

Аннотация: Проведен термодинамический анализ высокотемпературных взаимодействий в системах Ti-C-H-N, Ti-O-C-H-N, соответствующих процессам синтеза карбида титана в условиях плазменного потока с использованием различного титансодержащего сырья.

Ключевые слова: термодинамическое моделирование, карбид титана, нанопорошки, плазменный синтез.

THERMODYNAMIC MODELING OF PROCESSES IN CARBIDE-FORMING SYSTEMS Ti-C-H-N, Ti-O-C-H-N

Garbuzova A.K., Galevsky G.V., Rudneva V.V.

Siberian State Industrial University, Novokuznetsk, Russia, kafcmet@sibsiu.ru

Annotation: Thermodynamic analysis of interactions in systems of high Ti–C–H–N, Ti–O–C–H–N, the respective processes of synthesis of titanium carbide in the plasma flow using various titanium-containing raw materials.

Keywords: thermodynamic modeling, titanium carbide, nanopowders, plasma synthesis

Объектами термодинамического моделирования являются плазмометаллургические струйные процессы получения карбидов, которые, в отличие от традиционных, имеют некоторые особенности [1, 2]:

- быстротечность процессов карбидообразования, что дает возможность ряду исследований подвергать сомнению возможность достижения равновесия;
 - высокотемпературные условия протекания для довольно быстрого достижения равновесия;
- достижение высокого выхода карбидов исключительно в условиях, обеспечивающих газофазный характер реакций карбидообразования;
- получение карбидов в системах, состоящих из нескольких химических элементов, образующих многофазные многокомпонентные смеси, обусловливает необходимость выполнения их термодинамического анализа на ЭВМ;
- изменение условий существования конденсированных фаз вследствие образования их в виде частиц наноразмерного уровня (с большой кривизной поверхности), для которых парциальное давление над конденсированной фазой превышает давление насыщения над плоской поверхностью; однако в настоящее время отсутствует единое мнение о размерном пороге (1 или 2–10 нм) и соответствующие справочные данные;
- безусловная целесообразность выполнения термодинамических расчётов равновесных составов карбидообразующих систем при различных параметрах в связи с недостаточностью информации для описания с необходимой точностью и достоверностью кинетики и механизма процессов образования карбидов.

Приняв к сведению указанные особенности, результаты термодинамического моделирования процессов карбидообразования можно рассматривать и как прогнозные, требующие экспериментального подтверждения, и как технологические ориентиры, показатели совершенства реактора, а также

уровня организации в нём тепловых и массообменных процессов.

Целью термодинамического моделирования процессов синтеза является прогнозирование оптимальных параметров получения карбида титана (соотношения компонентов и температуры), определение равновесных показателей процесса (степени превращения сырья в карбид, составов газообразных и конденсированных продуктов), оценки вклада в процессы карбидообразования газофазных реакций, обеспечивающих эффективную переработку дисперсного сырья в условиях плазмометаллургической технологии.

Объектами исследования являлись системы Ti-O-C-H-N и Ti-C-H-N, так как в процессах синтеза использовалось сырье: тонкодисперсный порошок титана и диоксид титана TiO_2 , метан и плазмообразующий газ – азот.

Расчет равновесных составов газообразных и конденсированных продуктов проводился «константным методом», основанном на совместном решении следующих уравнений: закона действующих масс, материального баланса, суммарного числа молей газовой смеси, существования конденсированной фазы и закона Дальтона [1].

Расчеты выполнялись с использованием программы компьютерного моделирования высокотемпературных сложных химических равновесий «PLASMA» (ИХТТиМ СО РАН), имеющей встроенную базу данных продуктов взаимодействия для оксидо-, боридо-, карбидо- и нитридообразующих систем. При расчетах рассматривалась область температур 1000-6000 К при общем давлении в системе 0,1 МПа. Исходными данными служили константы равновесия реакций образования соединений из элементов, приведённые в [3-9].

Принятые для расчётов составы газовой и конденсированной фаз исследуемых систем приведены в таблице 1.

Tr ~	1	α			U 1
Гаршица		CCTABLI	LASODOM I	и коппепси	DODAHHOU MAA
таолица	1 —	Составы	I asobon .	и копдспси	рованной фаз

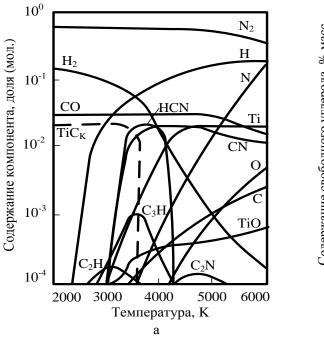
Система	Состав фаз		
	Газовой	Конденсированной	
Ti-O-C-H-N	H, H ⁺ , H ₂ , N, N ₂ , NH, NH ₂ , NH ₃ , C, C ⁺ , C ₂ , C ₃ , C ₄ , C ₅ ,	Ti, TiC, TiN, TiO,	
	CH ₂ , CH ₃ , CH ₄ , C ₂ H, C ₃ H, C ₄ H, C ₂ H ₂ , C ₂ H ₃ , C ₂ H ₄ , CN,	Ti_2O_3 , Ti_3O_5 , Ti_4O_7 ,	
	CN^{-1} , NCN, NCC, C_2N_2 , C_4N_2 , HCN, HCCN, C_3HN , O,	TiO_2	
	O ₂ , NO, NO ₂ , H ₂ O, CO, CO ₂ , Ti, TiO, TiO ₂ , TiOH		
Ti-C-H-N	$H, H^+, H_2, N, N_2, NH, NH_2, NH_3, C, C^+, C_2, C_3, C_4, C_5,$	Ti, TiC, TiN	
	CH ₂ , CH ₃ , CH ₄ , C ₂ H, C ₃ H, C ₄ H, C ₂ H ₂ , C ₂ H ₃ , C ₂ H ₄ , CN,		
	CN^{-1} , NCN, NCC, C_2N_2 , C_4N_2 , HCN, HCCN, C_3HN , Ti		

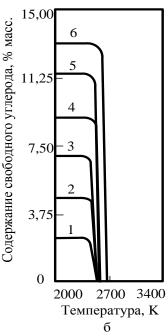
Выбор в исследуемых системах соотношений исходных компонентов определялся стехиометрией реакций образования целевых продуктов и параметрами технологического оборудования. Соотношения, выбранные для расчётов, приведены в таблице 2.

Таблица 2 – Соотношение компонентов в исследуемых системах

Соотношение компонентов, моль	Примечание
Ti:O:C:H:N=0.25:0.5:0.75:3:20	По стехиометрии для реакции
	$TiO_2+3CH_4=TiC+2CO+6H_2$ (1)
Ti:O:C:H:N=0.25:0.5:0.78:3.12:20	104%-ное количество углерода по сравнению
	со стехиометрией для реакции (1)
Ti:O:C:H:N=0.25:0.5:0.81:3.24:20	108%-ное количество углерода по сравнению
	со стехиометрией для реакции (1)
Ti:O:C:H:N=0.25:0.5:0.84:3.36:20	112%-ное количество углерода по сравнению
	со стехиометрией для реакции (1)
Ti:O:C:H:N=0.25:0.5:0.875:3.5:20	116%-ное количество углерода по сравнению
	со стехиометрией для реакции (1)
Ti:O:C:H:N=0.25:0.5:0.91:3.64:20	120%-ное количество углерода по сравнению
	со стехиометрией для реакции (1)
Ti:O:C:H:N=0.25:0.5:0.94:3.76:20	124%-ное количество углерода по сравнению
	со стехиометрией для реакции (1)
Ti:C:H:N=0.25:0.25:1.0:20	По стехиометрии для реакции
	$Ti+CH_4=TiC+2H_2$ (2)
Ti:C:H:N=0.25:0.375:1.0:20	150 %-ное количество углерода по сравнению
	со стехиометрией для реакции (2)

Результаты термодинамических расчетов равновесных составов системы Ti-O-C-H-N приведены на рисунке 1. В рассматриваемой системе получение карбида титана возможно при температуре ниже 3500 К при всех учитываемых в расчетах соотношениях компонентов. Термодинамически возможны следующие газофазные реакции образования карбида титана:


$$Ti_{\text{nap}} + 2HCN = TiC_{\text{TB}} + H_2 + N_2 \tag{3}$$


$$Ti_{nap} + 2CN = TiC_{TB} + N_2$$
 (4)

$$2\text{TiO}_{\text{nap}} + 4 \text{ HCN} = 2\text{TiC}_{\text{TB}} + 2\text{CO} + 2\text{H}_2 + 2\text{N}_2$$
 (5)

$$6Ti_{\text{nap}} + 2C_3H = 6TiC_{\text{TB}} + H_2 \tag{6}$$

Из реакций 3 и 6 термодинамически наиболее вероятной является реакция 3: степень превращения Ті в ТіС по этой реакции составляет 0,94. Полное превращение титана в карбид достигается в интервале температур 3200-3500 К при стехиометрическом соотношении Ті:С (рисунок 1, а) и избытке углерода в системе (рисунок 1, б). Однако в этом случае в конденсированных продуктах содержится свободный углерод, равновесная концентрация которого изменяется от 2,55 до 12,75 % масс. при изменении соотношения Ті:С в пределах 0,25:(0,28÷0,44).

а) равновесные составы газовой и конденсированной фаз в зависимости от температуры при соотношении Ti:O:C:H:N= 0,25:0,50:0,75:3:20

б) зависимость равновесной концентрации свободного углерода в конденсированной фазе от соотношения TiC=0,25:0,28 (1); 0,25:0.31 (2); 0,25:0.34 (3); 0,25:0,375 (4); 0,25:0,41 (5); 0,25:0,44 (6)

Рисунок 1 – Результаты термодинамических расчетов системы Ti – O – C-H – N

В условиях квазиравновесия при избытке карбидизатора при соотношении Ti:C=0,25:0,375 (рисунок 2) циановодород устойчив в более широкой области температур – (2000-3800) К, что делает возможным получение карбида, несодержащего свободного углерода.

В системе Ti-C-H-N образование карбида титана возможно в условиях равновесия (а) и квазиравновесия (б) (рисунок 3). В первом случае при изменении соотношения Ti:C = 0,25:(0,0625-0,25) степень превращения титана в карбид изменяется от 0,25 до 1. А при соотношении Ti:C = 0,25:0,375 (избытке карбидизатора) продуктом синтеза является карбид – углеродная композиция, содержащая 9,1 %масс. свободного углерода. Во втором случае конденсации углерода не происходит. В обоих случаях образование карбида термодинамически возможно по газофазной реакции (3).

Близость температур конденсации титана (3533 K) и плавления образования его карбида (3530 K) не позволяет сделать однозначное предположение о возможном механизме карбидообразования, хотя более вероятным представляется образование карбида по механизму «пар-кристалл».

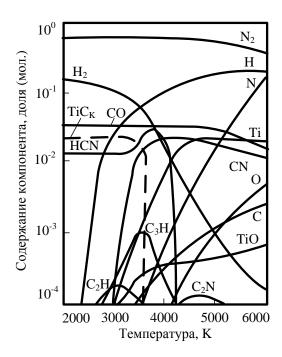


Рисунок 2 — Квазиравновесные составы газовой и конденсированной фаз системы Ti-O-C-H-N при соотношении компонентов Ti:O:C:H:N = 0,25:0,50:0,875:3,5:20

Рисунок 3 — Равновесные (а) и квазиравновесные (б) составы газовой и конденсированной фаз системы Ti-C-H-N при соотношении компонентов Ti:C:H:N=0,25:0,375:1,5:20

Выводы.

Термодинамическое моделирование процессов в карбидообразующих системах Ti-C-H-N и Ti-O-C-H-N показало:

- 1. В системе Ti-O-C-H-N образование карбида титана возможно при температуре ниже 3500 К при стехиометрическом и избыточном количестве углерода. При избытке углерода в конденсированных продуктах содержится свободный углерод, равновесная концентрация которого изменяется от 2,55 до 12,75 % масс. при изменении соотношения Ti:C в пределах 0,25:(0,28÷0,44). В условиях квазиравновесия при избытке карбидизатора циановодород устойчив в более широкой области температур (2000-3800) К, что делает возможным получение карбида, несодержащего свободного углерода.
- 2. В системе Ti-C-H-N образование карбида титана также возможно в равновесных и квазиравновесных условиях. В условиях равновесия при изменении соотношения Ti:C=0,25:(0,0625-0,25) степень превращения титана в карбид изменяется от 0,25 до 1, а при 1,5-кратном избытке карбидизатора карбид содержит 9,1 %масс. свободного углерода. В условиях квазиравновесия конденсации углерода не происходит.

3. Для каждого случая характерно образование карбида титана по газофазной реакции с участием паров титана и циановодорода, т.е. по схеме «пар-кристалл», что позволяет прогнозировать возможность достижения его высокого выхода в реальных условиях синтеза.

Библиографический список

- 1. Сурис А.Л. Термодинамика высокотемпературных процессов: справочник / А.Л. Сурис. М.: Металлургия, 1985. 568 с.
- 2. Термодинамическое моделирование процессов плазменного синтеза карбида титана / А.К. Гарбузова, В.В. Руднева, Г.В. Галевский, Л.С. Ширяева //Вестник горно-металлургической секции Российской академии естественных наук. Отделение металлургии: Сборник научных трудов. Вып. 32 // Сибирский государственный индустриальный университет. Новокузнецк, 2014. 196 с., ил.
- 3. Термодинамические свойства индивидуальных веществ: справочник: в 4 т. / Под ред. В.П. Глушко. М.: Наука,1978-1982 гг.
- 4. Spangehberg H.J. Thermodynamische Funktion verschiedener Kohlenwasserstoff Stickstoff Verbindungen und Radicals bei hohen Temperaturen und die Zussammensetzurg von CHN Plasmen // Zeitschrift für physikalische Chemie. 1974. B. 255. \mathbb{N} 1. S. 1–15.
- 5. Гурвич Л.В. Термодинамические свойства индивидуальных веществ: Т. 2 M.: АН СССР, 1962. 775 с.
- 6. Barin J. Thermochemical properties of Inorganic Substances / J. Barin, O. Knacbe. N–Y.: Academicpress, 1973.–647 p.
 - 7. JANAF Thermochemical tables. Wash. Gov. print. off, 1966–1975.
- 8. Герасимов Я.Н. Химическая термодинамика в цветной металлургии: Т. 5 / Я.Н. Герасимов, А.Н. Крестовников, А.С. Шахов. М.: Металлургия, 1973. 296 с.
- 9. Уикс К.Е. Термодинамические свойства 65 элементов и их окислов, галогенидов, карбидов и нитридов / К.Е. Уикс, Ф.Е. Блок. М.: Металлургия, 1965. 126 с.

УДК 536.42; 621.7;620.18

О КРИСТАЛЛИЗАЦИИ БИНАРНОГО СПЛАВА, МОДИФИЦИРОВАННОГО ТУГОПЛАВКИМИ НАНОЧАСТИЦАМИ

Черепанов А.Н.¹, Черепанова В.К.^{1,2}

¹Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск, Россия, ancher@itam.nsc.ru ²Новосибирский государственный технический университет, Новосибирск, Россия, vera.k.cherepanova@gmail.com

Аннотация: Предложена макроскопическая модель зарождения и роста твердой фазы в бинарном сплаве на высокоактивированных тугоплавких наночастицах с учетом влияния размерных и капиллярных эффектов. Получены выражения для свободной энергии образования и скорости зарождения центров кристаллизации на поверхности нанозатравок. Численные эксперименты проводились для сплава Al+Si, модифицированного частицами TiN.

Ключевые слова: модифицирование, наночастицы, гетерогенное зародышеобразование, кристаллизация, структурообразование, математическое моделирование

ON CRYSTALLIZATION OF A BINARY ALLOY MODIFIED BY REFRACTORY NANOPARTICLES

Cherepanov A.N.¹, Cherepanova V.K.^{1,2}

¹Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, Russia, ancher@itam.nsc.ru ²Novosibirsk State Technical University, Novosibirsk, Russia, vera.k.cherepanova@gmail.com

Abstract: The macroscopic model of nucleation and growth of a solid phase in a binary alloy on

СОДЕРЖАНИЕ

СЕКЦИЯ 1: ФУНДАМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ, ТЕОРИЯ, МОДЕЛИРОВАНИЕ	
ТЕХНОЛОГИИ МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ	4
КОНВЕРТЕРНОЕ ПРОИЗВОДСТВО СТАЛИ: СОСТОЯНИЕ,	
ДОМИНИРУЮЩИЕ ТЕНДЕНЦИИ, ПРОГНОЗЫ	4
Протопопов Е.В., Кузнецов С.Н., Фейлер С.В., Ганзер Л.А., Калиногорский А.Н. ФИЗИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ДВИЖЕНИЯ	
МЕТАЛЛИЧЕСКОГО РАСПЛАВА ПРИ НЕПРЕРЫВНОЙ РАЗЛИВКЕ	9
Протопопов Е.В., Числавлев В.В., Фейлер С.В.	
ОПТИМИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ АЛЮМИНОТЕРМИЧЕСКОЙ ПЛАВКИ	
МАРГАНЦА МЕТАЛЛИЧЕСКОГО	14
Рожихина И.Д., Нохрина О.И.	
ИССЛЕДОВАНИЕ ВЛИЯНИЯ СООТНОШЕНИЯ ЧУГУНА И МЕТАЛЛИЧЕСКОГО ЛОМА В ШИХТЕ ЭЛЕКТРОПЛАВКИ НА ТЕХНИКО-ЭКОНОМИЧЕСКИЕ	
МЕТАЛЬИЧЕСКОГО ЛОМА В ШИХТЕ ЭЛЕКТГОТЛАВКИ НА ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ПРОИЗВОДСТВА РЕЛЬСОВОЙ СТАЛИ	18
Уманский А.А., Думова Л.В.	10
СИСТЕМЫ АВТОМАТИЧЕСКОЙ ПОДАЧИ СЫРЬЯ (АПС)	23
Григорьев В.Г., Тепикин С.В., Кузаков А.А. Пьянкин А.П., Тимкина Е.В., Пинаев А.А.	
О ГРАФИЧЕСКОМ МОЛЕЛИРОВАНИИ РАБОТЫ	
ПРОИЗВОДСТВЕННЫХ СИСТЕМ В МЕТАЛЛУРГИИ	29
Кулаков С.М., Мусатова А.И., Кадыков В.Н.	
ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВОССТАНОВЛЕНИЯ	25
ВАНАДИЯ В СИСТЕМЕ V_2O_5-C - SI	35
1 олодова м.а., Рожихина и.д., нохрина О.и., Рыоенко и.а. АНАЛИЗ ВЛИЯНИЯ ХИМИЧЕСКОГО СОСТАВА РЕЛЬСОВОЙ	
ЭЛЕКТРОСТАЛИ НА КАЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ ЖЕЛЕЗНОДОРОЖНЫХ РЕЛЬСОВ	39
Уманский А.А., Думова Л.В.	
СОВЕРШЕНСТВОВАНИЕ ВНЕПЕЧНОЙ ОБРАБОТКИ РЕЛЬСОВОЙ	
СТАЛИ НА АГРЕГАТЕ «КОВШ-ПЕЧЬ» С ЦЕЛЬЮ ПОВЫШЕНИЯ	
ЭКСПЛУАТАЦИОННОЙ СТОЙКОСТИ ЖЕЛЕЗНОДОРОЖНЫХ РЕЛЬСОВ	44
Уманский А.А., Козырев Н.А., Бойков Д.В., Думова Л.В.	
ИЗУЧЕНИЕ ПОВЕДЕНИЯ МАРГАНЦА В ОКИСЛИТЕЛЬНЫХ УСЛОВИЯХ СТАЛЕПЛАВИЛЬНЫХ ПРОЦЕССОВ	40
ЛРОЦЕССОВ	48
МОДЕЛИРОВАНИЕ ПРОЦЕССА РАЗБРЫЗГИВАНИЯ ШЛАКА	
В КИСЛОРОДНОМ КОНВЕРТЕРЕ	51
Синельников В.О., Калиш Д., Шуцки М.	
ТЕХНОЛОГИЯ ФОРМИРОВАНИЯ НА УКП ОСНОВНЫХ	
БОРСОДЕРЖАЩИХ ШЛАКОВ – ПРИОРИТЕТНОЕ НАПРАВЛЕНИЕ	
КОВШЕВОЙ МЕТАЛЛУРГИИ	56
Бабенко А.А., Жучков В.И., Смирнов Л.А., Сычев А.В., Сельменских Н.И., Уполовникова А.Г. НЕРАВНОВЕСНЫЕ ДИССИПАТИВНЫЕ СТРУКТУРЫ И УПРАВЛЕНИЕ	- 4
СОДЕРЖАНИЕМ УГЛЕРОДА В СТРУЙНО-ЭМУЛЬСИОННОМ АГРЕГАТЕ	61
цымоал в.н., сеченов н.а., гыоенко и.а., оленников а.а. ОПТИМИЗАЦИЯ ВЫСОТЫ ВАННЫ РУДОТЕРМИЧЕСКОЙ ПЕЧИ	67
Кравцов К.И.	07
ПОВЫШЕНИЕ КВАЛИФИКАЦИИ ТЕХНОЛОГИЧЕСКОГО	
ПЕРСОНАЛА ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ	
ПО ПРОИЗВОДСТВУ АЛЮМИНИЯ, С ИСПОЛЬЗОВАНИЕМ	
АВТОМАТИЗИРОВАННОЙ ИНФОРМАЦИОННО-ОБУЧАЮЩЕЙ СИСТЕМЫ «АЛЮМИНЩИК»	71
Мартусевич Е.А., Буинцев В.Н.	
ИНСТРУМЕНТАЛЬНАЯ СИСТЕМА «ИНЖИНИРИНГ МЕТАЛЛУРГИЯ» ДЛЯ РЕШЕНИЯ ШИРОКОГО	
КРУГА ОПТИМИЗАЦИОННЫХ ЗАДАЧРыбенко И.А.	/5
Рыоенко и.а. РАЗРАБОТКА АЛГОРИТМА АВТОМАТИЗАЦИИ ПОДАЧИ	
ГАЗГАВОТКА АЛГОГИТМА АВТОМАТИЗАЦИИ ПОДАЧИ ШЛАКООБРАЗУЮЩЕЙ СМЕСИ В КРИСТАЛЛИЗАТОР МНЛЗ	82
Гусев А.А., Царуш К. А., Лицин К.В.	
МОДЕЛИРОВАНИЕ СЛОЖНЫХ МЕТАЛЛУРГИЧЕСКИХ СИСТЕМ С ИСПОЛЬЗОВАНИЕМ	
ДИССИПАТИВНЫХ СТРУКТУР И СИСТЕМНОЙ ДИНАМИКИ	85
Сеченов П.А. Пымбал В.П.	

ГАЗОФАЗНОЕ ВОССТАНОВЛЕНИЕ ЭЛЕМЕНТОВ	
ХРОМОРУДНОГО СЫРЬЯ	90
Заякин О.В., Жучков В.И.	
ИСПОЛЬЗОВАНИЕ ДИНАМИЧЕСКИХ МОДЕЛЕЙ	
ДОМЕННОГО ПРОЦЕССА В ЗАДАЧАХ ПОВЫШЕНИЯ	
КВАЛИФИКАЦИИ ТЕХНОЛОГИЧЕСКОГО ПЕРСОНАЛА	92
Гилева Л.Ю., Мясоедов С.В., Загайнов С.А., Титов В.Н.	
ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА АДЕКВАТНОСТИ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ НОВОГО	
НЕПРЕРЫВНОГО МЕТАЛЛУРГИЧЕСКОГО ПРОЦЕССА СЭР	97
Рыбенко И.А., Цымбал В.П.	
ФИЗИЧЕСКОЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ	
РАФИНИРОВАНИЯ МЕТАЛЛА АРГОНОМ	101
Лубяной Д.А., Толстикова Ю.А., Черепанов А.Г.	
МЕТОД И ИНСТРУМЕНТ РАЗРАБОТКИ ОПТИМАЛЬНЫХ	
ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ ПРИ СОВЕРШЕНСТВОВАНИИ	
СУЩЕСТВУЮЩИХ И СОЗДАНИИ НОВЫХ МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ	107
Рыбенко И.А.	
ПРОМЫШЛЕННЫЕ ИССЛЕДОВАНИЯ ОКИСЛЕНИЯ АЛЮМИНИЯ	
В ХОДЕ КАМЕРНОГО ВАКУУМИРОВАНИЯ СТАЛИ	113
Сафонов В.М., Еланский Д.Г., Кислица В.В., Мурысев В.А., Моров Д.В.	
ОПРЕДЕЛЕНИЕ КОНСТРУКТИВНЫХ ПАРАМЕТРОВ ФЕРРОСИЛИЦИЕВЫХ ПЕЧЕЙ И ХАРАКТЕРИС	
ПЕЧНЫХ ТРАНСФОРМАТОРОВ	116
Кашлев И.М.	
СЕКЦИЯ 2: ФУНДАМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ, ТЕОРИЯ И ТЕХНОЛОГИЯ	
ОБРАБОТКИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ: ЛИТЕЙНОЕ ПРОИЗВОДСТВО,	
ОБРАБОТКА ДАВЛЕНИЕМ, ТЕРМИЧЕСКАЯ ОБРАБОТКА	124
ODI ADOTKA AADJEHHEM, TEI MITTECKAJI ODI ADOTKA	124
ВЛИЯНИЕ ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ УСКОРЕННОГО	
ОХЛАЖДЕНИЯ НА МЕХАНИЧЕСКИЕ СВОЙСТВА И	
СТРУКТУРНО-ФАЗОВЫЕ СОСТОЯНИЯ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ	124
Громов В.Е., Белов Е.Г., Коновалов С.В., Комиссарова И.А., Иванов Ю.Ф.	
КОМПЛЕКСНОЕ ВЛИЯНИЕ БОРА И АЗОТА НА	
ОБРАТИМУЮ ОТПУСКНУЮ ХРУПКОСТЬ	128
Мазничевский А.Н., Сприкут Р.В., Заславский А.Я., Гойхенберг Ю.Н.	
ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ ПРОЦЕССА	
СОВМЕЩЕННОЙ ОБРАБОТКИ ДЛЯ ПОЛУЧЕНИЯ	
КАЛИБРОВАННЫХ ПРУТКОВ ИЗ АЛЮМИНИЕВОГО СПЛАВА 6082	134
Сидельников С.Б., Берсенев А.С., Загиров Н.Н., Беспалов В.Н.	
РЕЖИМ СТАРЕНИЯ ДЛЯ СНИЖЕНИЯ ТЕПЛОВОГО РАСШИРЕНИЯ	
ПОРШНЯ ИЗ СПЛАВА ТИПА АК21	140
Прудников А.Н., Прудников В.А.	
ИССЛЕДОВАНИЕ СТРУКТУРЫ И СВОЙСТВ В ЗОНЕ КОНТАКТА	
НИКЕЛЯ И АЛЮМИНИЯ ПРИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ	144
Анфилофьев В. В., Шелепова С. Ю., Туякбаев Б. Т., Джес А.В.	
ИССЛЕДОВАНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ ХОЛОДНОКАТАНЫХ,	
ОТОЖЖЕНЫХ И СВАРНЫХ ПОЛУФАБРИКАТОВ ИЗ ОПЫТНЫХ СПЛАВОВ	
СИСТЕМЫ AL-MG, ЭКОНОМНОЛЕГИРОВАННЫХ СКАНДИЕМ	149
Баранов В.Н., Сидельников С.Б., Фролов В.Ф., Зенкин Е.Ю., Орелкина Т.А.,	
Константинов И.Л., Ворошилов Д.С., Якивьюк О.В., Белоконова И.Н.	
КОМПЛЕКСНЫЕ МЕТАЛЛОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ	
СТАЛИ 110Г13Л ПОСЛЕ ТЕРМООБРАБОТКИ	154
Балановский А.Е., Штайгер М.Г., Кондратьев В.В., Карлина А.И.	
РАЗРАБОТКА НОВОЙ СИСТЕМЫ КРЕПЛЕНИЯ ЭЛЕМЕНТОВ	
КОНТЕЙНЕРА В УСТАНОВКЕ КОНФОРМ	159
Горохов Ю.В., Губанов И.Ю., Иванов А.Г.	
ИССЛЕДОВАНИЕ ПРОЦЕССОВ ВЫДАВЛИВАНИЯ ПОЛЫХ	
ИЗДЕЛИЙ В ШТАМПЕ С ПОДВИЖНОЙ МАТРИЦЕЙ	165
Евстифеев В.В., Александров А.А., Евстифеев А.В., Ковальчук А.И.	
ИССЛЕДОВАНИЯ ПРОЦЕССА ПОЛУЧЕНИЯ И СВОЙСТВ КАТАНКИ	
ИЗ СПЛАВА АВЕ С ПОМОЩЬЮ СОВМЕЩЕННЫХ МЕТОДОВ ОБРАБОТКИ	169
CHROTEHUROD C. F. HOROTHUR F. C. KTRÜMRUNDR HO. HO. CRMUVE A. H. TENRUTERD A. A.	

ОСОБЕННОСТИ ТЕПЛОВОГО РАСШИРЕНИЯ АЛЮМИНИЕВЫХ	
СПЛАВОВ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ ПОСЛЕ ОБРАБОТКИ	
РАСПЛАВА И ТЕРМООБРАБОТКИ	174
Попова М.В., Малюх М.А.	
СРАВНИТЕЛЬНЫЙ МЕТАЛЛОГРАФИЧЕСКИЙ АНАЛИЗ	101
СТРУКТУРЫ СТАЛИ СТЗ ПОСЛЕ РАЗЛИЧНЫХ СПОСОБОВ УПРОЧНЕНИЯ	181
Балановский А.Е., Штайгер М.Г., Кондратьев В.В., Карлина А.И.	405
АКТИВНОСТЬ МАГНИЯ В РАСПЛАВАХ СИСТЕМЫ FE-MG-SI	187
BJIACOB B.H., AFEEB IO.A.	101
ОСОБЕННОСТИ ЗАТУХАНИЯ УЛЬТРАЗВУКА В СТАЛИ 20ГЛ	191
Каравайцева А.А., Квеглис Л.И., Павлов А.В.	
РАСЧЕТ СОДЕРЖАНИЯ ТВЕРДОЙ ФАЗЫ, ВЫДЕЛЯЮЩЕЙСЯ	106
ПРИ ЗАТВЕРДЕВАНИИ РАСПЛАВА	196
Рафальский И.В., Лущик П.Е.	
ИССЛЕДОВАНИЕ ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ ПОЛУЧЕНИЯ	
ТРУБНЫХ ЗАГОТОВОК ГВС	200
МЕТОДОМ ВОЛОЧЕНИЯ ИЗ СПЛАВА БРБ2	200
Сидельников С.Б., Бер В.И., Вагнер А.В., Дударев В.М., Семиряков М.А.	
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ВЛИЯНИЯ	
ОСНОВНЫХ ФАКТОРОВ БОРОАЛИТИРОВАНИЯ НА ТОЛЩИНУ	20.5
ДИФФУЗИОННОГО СЛОЯ НА СТАЛИ 20	206
Мишигдоржийн У.Л., Улаханов Н.С., Сизов И.Г., Шурыгин Ю.Л., Хараев Ю.П.	
РАЗРАБОТКА СКОРОСТНЫХ РЕЖИМОВ ПРОКАТКИ ТРАМВАЙНЫХ	
РЕЛЬСОВ В НЕПРЕРЫВНОЙ РЕВЕРСИВНОЙ ГРУППЕ КЛЕТЕЙ	211
Сметанин С.В., Перетятько В.Н.	
ОСОБЕННОСТИ ФОРМИРОВАНИЯ ШЕРОХОВАТОСТИ	
ПРИ ПРОИЗВОДСТВЕ ГОРЯЧЕКАТАНОЙ ДРЕССИРОВАННОЙ ЛЕНТЫ	216
Медведева Е.М., Голубчик Э.М., Гулин А.Е.	
ИССЛЕДОВАНИЕ ПРОЦЕССОВ КОКИЛЬНОГО	
ЛИТЬЯ АЛЮМИНИЕВЫХ СПЛАВОВ	221
Васюхно А.Ю., Черномас В.В.	
ПЛАЗМЕННО-ДУГОВАЯ ПОВЕРХНОСТНАЯ МОДИФИКАЦИЯ	
МЕТАЛЛОВ В ЖИДКОЙ СРЕДЕ	230
Балановский А.Е., Гречнева М.В., Ву Ван Хуи, Штайгер М.Г.,	
Кондратьев В.В., Карлина А.И.	
СЕКЦИЯ 3: ТЕОРИЯ И ТЕХНОЛОГИЯ ПРОЦЕССОВ СВАРКИ,	
ПОРОШКОВОЙ МЕТАЛЛУРГИИ И ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ МАТЕРИА.	ЛОВ
И ПОКРЫТИЙ	
ОКИСЛЕНИЕ НАНОДИБОРИДА ТИТАНА НА ВОЗДУХЕ	235
Галевский Г.В., Руднева В.В., Ефимова К.А	233
ИСПОЛЬЗОВАНИЕ ТЕХНОГЕННЫХ ОТХОДОВ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА ДЛЯ	
ПОЛУЧЕНИЯ ФЛЮС-ДОБАВОК ДЛЯ СВАРКИ И НАПЛАВКИ СТАЛИ	241
Козырев Н.А., Крюков Р.Е., Усольцев А.А., Кислов А.И., Свистунов А.Д.	271
ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ ПРОЦЕССОВ	
ВОССТАНОВЛЕНИЯ WO ₃ УГЛЕРОДОМ И КРЕМНИЕМ	245
Крюков Р.Е., Козырев Н.А., Бендре Ю.В., Горюшкин В.Ф., Шурупов В.М.	243
АНТИФРИКЦИОННЫЕ КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ	
НА БАЗЕ АЛЮМИНИЕВЫХ СПЛАВОВ С КЕРАМИЧЕСКИМИ НАПОЛНИТЕЛЯМИ	2/19
Калашников И.Е., Болотова Л.К., Кобелева Л.И., Колмаков А.Г., Катин И.В.	27)
ИССЛЕДОВАНИЕ ПРОЦЕССА СИНТЕЗА ВЫСОКОДИСПЕРСНОГО	
ПОРОШКА КАРБИДА КРЕМНИЯ КОМБИНИРОВАННЫМ МЕТОДОМ	254
Квашина Т.С., Крутский Ю.Л., Чушенков В.И.	237
квашина 1.С., крутский ю.л., чушенков б.и. ВЛИЯНИЕ ИНГИБИРУЮЩИХ ДОБАВОК ТУГОПЛАВКИХ КАРБИДОВ НА СТРУКТУРУ И СВОЙСТ	ΓΒΔ
ТВЕРДЫХ СПЛАВОВТВЕРДИХ ДОВАВОК ТУГОПЛАВКИХ КАГВИДОВ ПА СТГУКТУГУ И СВОИСТ	.DA 257
Крутский Ю.Л., Веселов С.В., Тюрин А.Г., Черкасова Н.Ю., Кузьмин Р.И.,	231
чушенков В.И., Воробьев Р.С., Квашина Т.С.	
использование кластерного представления для	
ИСПОЛЬЗОВАНИЕ КЛАСТЕНТОГО III ЕДСТАВЛЕНИЯ ДЛЯ ПОЛУЧЕНИЯ ФАЗЫ NI3AL ПРИ СПЕКАНИИ ПОРОШКОВ NI И AL	262
Пwec A R Hockord M Квеглис II И Казначеева A M	202

KJIACTEPHOE IIPEACTABJIEHUE MAPTEHCUTHOFO	267
ПРЕВРАЩЕНИЯ В НИКЕЛИДЕ ТИТАНА	267
Джес А.В., Носков Ф.М., Квеглис Л.И., Казначеева А.М.	
ОЦЕНКА ПАРАМЕТРОВ ПРОЦЕССА ДУГОВОЙ СВАРКИ ПОРОШКОВОЙ ПРОВОЛОКОЙ	272
	213
Вотинова Е.Б., Шалимов М.П., Табатчиков А.С.	
ИССЛЕДОВАНИЕ С ПОМОЩЬЮ АТОМНО-СИЛОВОЙ МИКРОСКОПИИ	
СТРУКТУРЫ СИЛУМИНА, МОДИФИЦИРОВАННОГО НАНЕСЕНИЕМ НА ЕГО ПОВЕРХНОСТЬ	277
ПОКРЫТИЯ СИСТЕМЫ AL-Y ₂ O ₃ МЕТОДОМ ЭЛЕКТРОВЗРЫВНОГО ЛЕГИРОВАНИЯ	277
Осинцев К.А., Бахриева Л.Р., Бутакова К.А., Мусорина Е.В.,	
Коновалов С.В., Загуляев Д.В., Громов В.Е.	
ИССЛЕДОВАНИЕ МЕТОДАМИ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ СТРУКТУРЫ ДЕТАЛЕЙ ИЗ ТИТАНОВОГО СПЛАВА ВТ1-0,	
СТРУКТУРЫ ДЕТАЛЕЙ ИЗ ТИТАНОВОГО СПЛАВА ВТТ-0, СФОРМИРОВАННЫХ ПОСЛОЙНЫМ СПЕКАНИЕМ ПОРОШКОВ	
ЭЛЕКТРОННО-ЛУЧЕВЫМ НАПЛАВЛЕНИЕМТогошков	202
	203
Батранин А.В., Федоров В.В., КлименовВ.А., Клопотов А.А., Абзаев Ю.А., Волокитин Г.Г., Курган К.А.	
Аозаев Ю.А., волокитин т.г., курган к.А. ЦИРКУЛЯЦИЯ ЙОДИДОВ ЖЕЛЕЗА И ХРОМА	
ПРИ ДИФФУЗИОННОМ ХРОМИРОВАНИИ	200
ПРИ ДИФФУЗИОППОМ ХРОМИРОВАПИИ	∠00
лристюк п.А. богданов С.П. ПОЛУЧЕНИЕ СЛОИСТЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ	
ПОЛУЧЕНИЕ СЛОИСТЫХ КОМПОЗИЦИОННЫХ МАТЕГИАЛОВ С ЭПФ МЕДИЦИНСКОГО НАЗНАЧЕНИЯ	202
Насакина Е.О., Баикин А.С., Конушкин С.В., Сергиенко К.В., Каплан М.А.,	293
пасакина Е.О., Ваикин А.С., конушкин С.Б., Сергиенко К.Б., каплан м.А., Федюк И.М., Севостьянов М.А., Колмаков А.Г., Клименко С.А.	
ИССЛЕДОВАНИЕ ВЛИЯНИЯ ДОБАВОК ВЫСОКОДИСПЕРСНЫХ	
исследование влияния довавок высокодисне сных КАРБИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ НА КАЧЕСТВО	
ТВЕРДЫХ СПЛАВОВ СИСТЕМЫ WC-CO	205
Чушенков В.И., Крутский Ю.Л., Квашина Т.С.	493
РАШИРЕНИЕ ВОЗМОЖНОСТЕЙ ПРОИЗВОДСТВА АКТИВИРУЮЩИХ	
ФЛЮСОВ ДЛЯ ДУГОВОЙ СВАРКИ ЗА СЧЕТ ИСПОЛЬЗОВАНИЯ	
УЛЬТРАДИСПЕРСНЫХ ПРОДУКТОВ ПЕРЕРАБОТКИ ОТХОДОВ КРЕМНИЯ	300
Иванчик Н.Н., Балановский А.Е., Кондратьев В.В., Сысоев И.А., Карлина А.И.	300
ВЛИЯНИЯ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ НА АНОДНОЕ	
ПОВЕДЕНИЕ СПЛАВА AL + 2,18 % FE В НЕЙТРАЛЬНОЙ СРЕДЕ	305
Ганиев И.Н., Джайлоев Дж.Х., Амонов И.Т., Эсанов Н.Р.	
ВЛИЯНИЕ НИЗКОТЕМПЕРАТУРНОГО ФАЗОВОГО ИЗМЕНЕНИЯ	
СПЛАВА И РАЗМЕРА ЧАСТИЦ НА НАПРЯЖЕНИЕ И СВОЙСТВА СЛОЯ ПОКРЫТИЯ	311
Шувень Сюй, Сичжан Чен	311
ИССЛЕДОВАНИЯ ИЗМЕНЕНИЙ СВОЙСТВ ПОВЕРХНОСТНЫХ СЛОЕВ СИЛУМИНА	
МОДИФИЦИРОВАННЫХ ОКСИДОМ ИТТРИЯ	318
Громов В.Е., Иванов Ю.Ф., Загуляев Д.В., Толкачев О.С., Петрикова Е.А., Коновалов С.В.	
ФОРМИРОВАНИЕ И КОНТРОЛЬ ПОРИСТОСТИ ВО ВРЕМЯ ЛАЗЕРНОЙ	
СВАРКИ ДВУХФАЗНЫХ ОЦИНКОВАННЫХ СТАЛЕЙ DP780	321
Хуанг Л., Чэнь С., Коновалов С., Ма Х.	
ВЛИЯНИЕ ИЗМЕНЕНИЯ ФАЗОВОГО СОСТАВА СПЛАВА И ЕГО РАЗМЕРА	
ЧАСТИЦ ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ НА НАПРЯЖЕНИЕ И СВОЙСТВА	
ПОВЕРХНОСТНОГО СЛОЯ	327
Зиу С., Чэнь С.	
ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ	
В КАРБИДООБРАЗУЮЩИХ СИСТЕМАХ TI – C – H – N, TI – O – C – H - N	334
Гарбузова А.К., Галевский Г.В., Руднева В.В.	
О КРИСТАЛЛИЗАЦИИ БИНАРНОГО СПЛАВА, МОДИФИЦИРОВАННОГО ТУГОПЛАВКИМИ	
НАНОЧАСТИЦАМИ	338
Черепанов А.Н., Черепанова В.К.	
ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ СВАРКИ ДЛИННОМЕРНЫХ	
РЕБРИСТЫХ ТИТАНОВЫХ ПАНЕЛЕЙ НА АВТОМАТИЧЕСКОЙ УСТАНОВКЕ УСП-5000	344
Григорьев В.В., Бахматов П.В.	
ВЛИЯНИЕ ТЕХНИЧЕСКИХ ОПЕРАЦИЙ ПРИ СОЗДАНИИ	
ЭЛЕМЕНТОВ АЛЮМИНИЕВОГО ТРУБОПРОВОДА НА ПОРООБРАЗОВАНИЕ	350
Ващук И.А., Бахматов П.В.	
МЕТАЛЛУРГИЧЕСКИЕ ПРОЦЕССЫ, ГАЗОДИНАМИКА И	
ТЕПЛОМАССОПЕРЕНОС ПРИ СВАРКЕ ПЛАВЛЕНИЕМ	358
Чинахов Д.А., Солодский С.А., Майорова Е.И., Григорьева Е.Г.	

СЕКЦИЯ 4: ТЕПЛО- И МАССОПЕРЕНОС В МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССАХ И АГРЕГАТАХ. РЕСУРСО- И ЭНЕРГОСБЕРЕЖЕНИЕ, ЭКОЛОГИЯ И УТИЛИЗАЦИЯ ОТХОДОВ	
ОТЛОДОВ	505
ОБРАЗОВАНИЕ И ВЫБРОСЫ ДИОКСИДА СЕРЫ ПРИ ПРОИЗВОДСТВЕ АЛЮМИНИЯ	363
Галевский Г.В., Минцис М.Я.	
СОКРАЩЕНИЕ ВРЕДНЫХ ВЫБРОСОВ НА ТЭЦ С ПЕРЕВОДОМ	266
ОТОПЛЕНИЯ КОТЛОВ НА ГАЗООБРАЗНОЕ ТОПЛИВО	366
Коротков С.Г., Сазонова Я.Е. К ВОПРОСУ О ПЕРСПЕКТИВАХ ЭНЕРГОТЕХНОЛОГИЧЕСКОЙ	
ПЕРЕРАБОТКИ БУРЫХ УГЛЕЙ КЕМЕРОВСКОЙ ОБЛАСТИ	360
Прошунин Ю.Е., Школлер М.Б.	309
ЭМИССИЯ ПАУ ИЗ САМООБЖИГАЮЩИХСЯ АНОДОВ	
ПРИ ПРОИЗВОДСТВЕ АЛЮМИНИЯ	375
Минцис М.Я., Галевский Г.В.	
ТЕХНОЛОГИЧЕСКИЕ РЕШЕНИЯ ГАЗООЧИСТНЫХ	
УСТАНОВОК ОК РУСАЛ ДЛЯ ОЧИСТКИ ОТХОДЯЩИХ	
ГАЗОВ ОТ ЭЛЕКТРОЛИЗЁРОВ С САМООБЖИГАЮЩИМСЯ АНОДОМ	377
Григорьев В.Г., Тепикин С.В., Шемет А.Д., Высотский Д.В., Кузаков А.А., Тенигин А.Ю.	
МОДЕЛИРОВАНИЕ ТЕПЛОВЫХ ПРОЦЕССОВ НА	202
ГОРЕЛКЕ СО ВСТРОЕННЫМ РАДИАЦИОННЫМ РЕКУПЕРАТОРОМ	383
Стерлигов В.В., Старикова Д.А. ИССЛЕДОВАНИЕ КАТАЛИТИЧЕСКИХ СВОЙСТВ	
ИССЛЕДОВАНИЕ КАТАЛИТИЧЕСКИХ СВОИСТВ СИЛИКОМАРГАНЦЕВОГО ШЛАКА	200
ПавловичЛ.Б., Исмагилов З.Р., Дятлова К.А.	300
СРАВНИТЕЛЬНЫЙ АНАЛИЗ СОВРЕМЕННЫХ НАПРАВЛЕНИЙ	
ИСПОЛЬЗОВАНИЯ ПРОМЫШЛЕННЫХ ОТХОДОВ КОКСОХИМИИ	394
Полях О.А., Пономарев Н.С., Журавлев А.Д.	
ПЛАЗМОХИМИЧЕСКАЯ ПЕРЕРАБОТКА ПРОМЫШЛЕННЫХ	
ГАЛОГЕНОСОДЕРЖАЩИХ ОРГАНИЧЕСКИХ ОТХОДОВ	
НА ПРЕДПРИЯТИЯХ ХИМИЧЕСКОЙ И ФАРМАЦЕВТИЧЕСКОЙ ПРОМЫШЛЕННОСТИ	398
Гимпелевич И., Мегидов Е., Мишне И., Рам Ш., Шимон Ю.	
РЕСУРСОСБЕРЕГАЮЩАЯ ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ НАНОКРЕМНЕЗЕМА	401
Кондратьев В.В., Колосов А.Д., Горовой В.О., Небогин С.А.,	
Ёлкин К. С., Немаров А.А., Иванов А.А. ПЕРСПЕКТИВЫ УТИЛИЗАЦИИ ОКАЛИНЫ ПРОКАТНЫХ ПРОИЗВОДСТВ	106
Горшкова О. С., Матюхин В. И.	400
СИСТЕМА ДОПОЛНИТЕЛЬНОГО НАГРЕВА СИЛИКАТНОЙ СТРУИ	
ПРИ ПЛАВЛЕНИИ ТЕХНОГЕННЫХ ОТХОДОВ	409
Волокитин Г.Г., Скрипникова Н.К., Волокитин О.Г., Шеховцов В.В.	
УСКОРЕННАЯ РЕКУЛЬТИВАЦИЯ ОТХОДОВ ЖЕЛЕЗОРУДНОГО ОБОГАЩЕНИЯ	412
Водолеев А.С., Бердова О.В., Юмашева Н.А.	
ИССЛЕДОВАНИЕ КОМБИНИРОВАННЫХ УПАКОВОЧНЫХ МАТЕРИАЛОВ ДЛЯ	
МЕТАЛЛОПРОДУКЦИИ	417
Коляда Л.Г., Тарасюк Е.В.	404
ТЕПЛОВАЯ РАБОТА ВОДООХЛАЖДАЕМЫХ ЭЛЕМЕНТОВ ЭДП	421
Корнеев С.В., Трусова И.А.	
О ТЕХНОЛОГИЯХ СНИЖЕНИЯ ВЛИЯНИЯ ПРОИЗВОДСТВ МЕТАЛЛИЧЕСКОГО КРЕМНИЯ НА ОКРУЖАЮЩУЮ СРЕДУ	127
Ёлкин К.С., Ёлкин Д.К., Карлина А.И.	721
ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ СУХОЙ СЕПАРАЦИИ	
МИКРОКРЕМНЕЗЁМА ДЛЯ ПОЛУЧЕНИЯ ЦЕЛЕВЫХ ПРОДУКТОВ	432
Кондратьев В.В., Небогин С.А., Колосов А. Д., Горовой В.О.,	
Немаров А.А., Иванов А.А., Запольских А.С.	432
НАПРАВЛЕНИЯ СОКРАЩЕНИЯ РАСХОДА ФТОРИСТЫХ	
СОЛЕЙ ПРИ ПРОИЗВОДСТВЕ АЛЮМИНИЯ	436
Ржечицкий Э.П., Петровский А.А., Немчинова Н.В., Карлина А.И.	
ПОВЫШЕНИЕ НАДЕЖНОСТИ РАБОТЫ ЩЕКОВЫХ ДРОБИЛОК	
ПРИМЕНЕНИЕМ УПРУГИХ ПНЕВМАТИЧЕСКИХ ЭЛЕМЕНТОВ В СОЧЛЕНЕНИЯХ КИНЕМАТИЧЕСКИХ ПАР	420
Никитин А.Г., Абрамов А.В.	439
пикития дл. "Абрамов А.Б.	

РЕЗУЛЬТАТЫ РАЗРАБОТКИ ОПЫТНОГО ОБРАЗЦА	
ТЕРМОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ	443
Зимина Т.И., Иванов Н.Н., Захаров С.В., Трошина А.О., Паньков А.М.	
РЕЗУЛЬТАТЫ РАЗРАБОТКИ ЭКСПЕРИМЕНТАЛЬНОГО	
ТЕПЛООБМЕННОГО АППАРАТА	446
Ершов В.А., Зимина Т.И., Говорков А.С., Иванов Н.А.,	
Захаров С.В., Трошина А.О.	
ЭНЕРГОСБЕРЕГАЮЩИЙ СПОСОБ РЕЗАНИЯ	
НА НОЖНИЦАХ ПРЕДВАРИТЕЛЬНО ИЗОГНУТОЙ ПОЛОСЫ	449
Никитин А.Г., Демина Е.И.	
СОСТАВ ТЕПЛОИЗОЛЯЦИОННОЙ ЧАСТИ ОТРАБОТАНОЙ	
ФУТЕРОВКИ – ОТХОДА КАПИТАЛЬНОГО РЕМОНТА	
АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ	452
Ржечицкий Э.П., Петровский А.А., Немчинова Н.В.	
ИЗВЛЕЧЕНИЕ ДРАГОЦЕННЫХ МЕТАЛЛОВ ИЗ КАТАЛИЗАТОРОВ	
В ПЛАЗМЕННЫХ ПЕЧАХ ПЕРИОДИЧЕСКОГО ДЕЙСТВИЯ	457
Девятых Е.А., Девятых Т.О., Швыдкий В.С.	
ЭНЕРГОЭФФЕКТИВНЫЕ ТЕХНОЛОГИИ ДЛЯ СИСТЕМ	
ГАЗООЧИСТКИ АЛЮМИНИЕВЫХ ЗАВОДОВ	461
Ершов В.А., Зимина Т.И., Колмогорцев И В., Горовой В.О., Трошина А.О.	
ИССЛЕДОВАНИЕ ТЕПЛОВОЙ РАБОТЫ КАМЕРНОЙ ПЕЧИ БАРАБАННОГО ТИПА	464
Черемискина Н.А., Щукина Н.В., Лошкарев Н.Б., Лавров В.В.	

Научное издание

МЕТАЛЛУРГИЯ: ТЕХНОЛОГИИ, ИННОВАЦИИ, КАЧЕСТВО

«Металлургия – 2017»

Труды XX Международной научно-практической конференции

Часть 2

Под общей редакцией профессора Е.В. Протопопова

Технический редактор В.Е. Хомичева

Компьютерная верстка Н.В. Ознобихина

Подписано в печать 23.10.2017 г. Формат бумаги 60×84 1/16. Бумага офисная. Печать цифровая. Усл. печ. л. 27,6 Уч.-изд. л. 30,0 Тираж 300 экз. Заказ № 521

Сибирский государственный индустриальный университет 654007, г. Новокузнецк, ул. Кирова, 42 Издательский центр СибГИУ