Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет»

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ЕСТЕСТВЕННЫЕ И ТЕХНИЧЕСКИЕ НАУКИ

ВЫПУСК 27

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых 16 – 17 мая 2023 г.

ЧАСТЬ І

Под общей редакцией профессора С.В. Коновалова

Новокузнецк 2023

Редакционная коллегия:

д-р техн. наук, профессор Коновалов С.В., д-р физ.-мат. наук, профессор Громов В.Е., канд. техн. наук Шевченко Р.А., канд. техн. наук, доцент Темлянцева Е.Н.

H 340

Наука и молодежь: проблемы, поиски, решения: труды Всероссийской научной конференции студентов, аспирантов и молодых ученых, 16–17 мая 2023 г. Выпуск 27. Часть І. Естественные и технические науки / Министерство науки и высшего образования Российской Федерации, Сибирский государственный индустриальный университет; под общ. ред. С.В. Коновалова — Новокузнецк; Издательский центр СибГИУ, 2023. — 385 с.: ил.

ISSN 2500-3364

Представлены труды Всероссийской научной конференции студентов, аспирантов и молодых ученых по результатам научно-исследовательских работ. Первая часть сборника посвящена актуальным вопросам в области естественных наук, металлургических процессов, технологий, материалов и оборудования, экологии, безопсности, рациональному использованию природных ресурсов.

Материалы сборника представляют интерес для научных и научнотехнических работников, преподавателей, аспирантов и студентов вузов.

оксида кремния в печи сопротивления / Полях О.А., Ноздрин И.В., Строкина И.В. [и др.]. // Металлургия: технологии, инновации, качество «Металлургия – 2022»: сб. тр. XXIII Междунар. науч.-практ. конф. Часть 1. – СибГИУ. – Новокузнецк, 2022. – С. 180 – 186.

- 2. Якушевич Н.Ф. Термодинамическая модель углетермического производства карбида кремния / Н.Ф. Якушевич, С.Ф. Павлов // Сб. науч. трудов «Кремнистые ферросплавы». М., Металлургия, 1988. С. 100-106.
- 3. Якушевич Н.Ф. Физико-химические взаимодействия в руднотермических печах при плавке кремния / Н.Ф. Якушевич, О.А. Коврова // Изв. вузов. Черная металлургия. 1997. №8. С. 3–8.
- 4. Якушевич Н.Ф. Механизм межфазных взаимодействий в ванне ферросилициевой печи / Н.Ф. Якушевич, О.А. Коврова, Г.В. Галевский, И.М. Кашлев // Компьютерные методы в управлении электротехнологическими режимами руднотермических печей: матер. Всерос. науч.-техн. совещ. Санкт Петербург: С-ПтТИ, 1998. С. 59 65.
- **5.** Полях О.А. Анализ физико-химических процессов образования и исследование свойств микрокремнезема / О.А. Полях, Г.В. Галевский, Н.Ф. Якушевич // Вестник ГМС РАЕН. Отделение металлургии. Москва Новокузнецк: СибГИУ. 2015. Вып. 15. С. 49—55.

УДК 669.041

ВАРИАНТЫ ПЕРЕРАБОТКИ ВЫСОКОФОСФОРИСТОЙ ЖЕЛЕЗНОЙ РУДЫ БАКЧАРСКОГО МЕСТОРОЖДЕНИЯ

Топина К.В., Строкина И.В., Ноздрин И.В., Полях О.А.

Сибирский государственный индустриальный университет, г. Новокузнецк, e-mail: kafcmet@sibsiu.ru

В связи со значительной выработкой запасов сибирских месторождений железной руды и необходимостью импортировать её с ближнего и дальнего зарубежья вопрос об увеличении сырьевой базы чёрной металлургии Урала и Сибири в последние годы становится особо актуальным. В связи с нехваткой чистого по примесям железорудного сырья использование высокопримесных, в т. ч. высокофосфористых руд в черной металлургии становится все более актуальным.

Ключевые слова: высокофосфористое месторождение, Бакчарское месторождение, производство удобрений, сталеплавильные шлаки, сталь, чугун.

На данный момент в металлургии существует тенденция к увеличению объемов производства чугуна, стали и металлопроката. Это ведет к значительному росту объемов добычи железной руды, увеличению сырьевой базы металлургических комбинатов, освоению новых месторождений [1]. К примеру, Бакчарское месторождение Томской области, которое является уникальным железорудным месторождением и потенциально долгосрочным ис-

точником сырья для металлургических комбинатов.

Разрабатываемые рудные участки характеризуются геологами как полиметаллические с содержанием благородных редкометальных и редкоземельных элементов, а также тория, ванадия, фосфора, циркония, титана. Выполненные анализы двух проб Бакчарской руды показали следующее содержание в них ценных металлов [2]:

```
(Co, Be, Mo, Ge, Sn) < (1-3)·10<sup>-4</sup> %;
(Ni, Hf, Sr, In, Sc, W, Nb, Cu, I, Sb) < (1-3)·10<sup>-3</sup> %;
(Ta, Ga, La) < 0,01%;
(V, Mn, Ti, Zr, Cr) < 0,2-0,3 %.
```

Бакчарская железная руда является высокофосфористой, с содержанием P_2O_5 до 1 %, поэтому, технология плавки стали должна быть специфичной — обеспечивающей получение качественного металла и одновременно извлечение фосфора в высокофосфористый шлак с последующей переработкой [3, 4].

Рассмотрены разные варианты организации производства: получение металлизированных окатышей в печах шахтного типа, плавка чугуна в рудотермической печи из необогащенной руды, плавка стали в электропечах с разными вариантами загрузки шихты (таблица 1).

Таблица 1 – Характеристики плавок получения чугуна и стали из железной руды Бакчарского месторождения

Расчетные показатели пла- вок		Железная руда (ЖР) + кокс	Концентрат ЖР (ЖРК) + кокс	Лом + чугун + окатыши из ЖРК	Лом + окаты- ши из ЖРК	Лом + чу- гун + ока- тыши из ЖРК
Соотно компон				(1:1:2)	(1:3)	(1:1:2)
Варианты	ы плавок:	1	2	3	4	5
	ЖР	2137,0	-	-	-	-
D	ЖРК	-	1685,4	-	-	-
Расход сырь-	кокс	377,3	342,1	-	-	-
евых матери-	ЛОМ	-	-	307,5	330,1	301,0
алов на 1 т	чугун	-	-	307,5	-	301,0
стали, кг	окатыши	-	-	615,1	990,4	602,0
	известь	619,7	197,2	123,0	198,1	90,3
Выход чугуна % от	-	50,7	64,1	-	-	-
	Fe	93,61	93,43	-	-	-
	Si	1,21	1,07	-	1	-
Состав чугу-	V	0,10	0,22	-	-	-
на, %	C	4,19	4,13	-	1	-
	Mn	0,49	0,42	-	-	-
	P	0,39	0,74	-	-	-
Выход шлак на 1 т ме		1191,3	421,2	-	-	201,4

Продолжение таблицы 1

Расчетные по		Железная руда (ЖР) + кокс	Концентрат ЖР (ЖРК) + кокс	Лом + чугун + окатыши из ЖРК	Лом + окаты- ши из ЖРК	Лом + чу- гун + ока- тыши из ЖРК
Соотно	шение			(1.1.2)	(1.2)	(1.1.2)
компон	іентов:			(1:1:2)	(1:3)	(1:1:2)
Варианты	ы плавок:	1	2	3	4	5
	SiO_2	43,09	35,12	-	-	36,35
	P_2O_5	0,04	0,22	-	-	0,21
	MnO	0,13	0,32	-	-	0,90
Состав низ-	TiO ₂	0,50	1,15	-	-	1,08
кофосфори-	Al_2O_3	8,26	21,59	-	-	19,16
стого шлака,	FeO	0,66	0,66	-	-	5,84
%	MgO	1,79	2,35	-	-	0,73
	CaO	45,52	38,54	-	-	35,28
	V_2O_5	0,01	0,05	-	-	0,45
Основнос		1,1	1,2	-	-	1,0
Тпл. шл		1420	1400	_	_	1400
Выход стали						
тельной плав	-	468,0	593,3	812,9	757,3	830,6
сырья	ŕ	, -	,-	- 7-	, .	,-
•	Fe	99,42	99,46	99,34	99,49	99,58
	Mn	0,05	0,04	0,05	0,04	0,04
Состав ста-	V	0,01	0,02	0,01	0,02	0,03
ли, %	Si	0,39	0,35	0,50	0,35	0,25
ŕ	С	0,10	0,10	0,10	0,10	0,10
	P	0,02	0,02	0,01	0,01	0,01
Выход шлака	при окисли-			-		
тельной плав		17,0	11,4	29,3	45,5	5,6
пуска	стали					
	SiO_2	27,98	22,24	24,37	24,28	7,23
C	P_2O_5	5,12	14,74	3,83	3,10	19,46
Состав вы-	MnO	3,68	4,64	1,53	1,00	4,94
сокофосфо-	V_2O_5	1,08	3,30	0,81	0,60	1,99
ристого шлака с до-	TiO ₂	0,19	0,23	0,77	0,80	0,20
шлака с до- бавкой из-	Al_2O_3	3,14	4,31	13,70	14,22	3,54
вести, %	FeO	15,62	17,22	11,48	10,84	19,32
БСТИ, /0	MgO	0,68	0,47	0,52	0,54	0,13
	CaO	42,51	32,85	42,98	44,62	43,18
Основность высокофосфористого шлака		1,5	1,5	1,5	1,6	1,6
		1600	1550	1650	1650	1600
Т _{ПЛ.} шлака, ⁰ С 1600 1550 1650 1650 1600 * уарамдарую и и до проможения по при						

^{* -} характерна для вариантов 1 и 2 с промежуточным получением чугуна и сливом шлака до 95 %. ** - для вариантов 1, 2 и 5 является второй стадией с новым наведением шлака при получении стали; переплав лома, чугуна и окатышей (варианты 3 и 4) производятся без слива шлака, вариант 5 — со сливом до 95 % и наведением высокофосфористого железисто-известкового шлака.

Наиболее целесообразным и экономичным является вариант с предварительным скачиванием первичного шлака и последующим наведением железисто-известкового шлака с целью наиболее полного извлечения фосфора. Высокофосфористые шлаки, содержащие более $20\%~P_2O_5$, $\approx 20\%~FeO$ и до 40%~CaO, в дальнейшем могут перерабатываться методом алюминотермического восстановления фосфора из фосфатов кальция, а получающийся попутный продукт - синтетические высокоглиноземистые ($60\text{--}70\%~Al_2O_3$) кальций-алюминатные шлаки, могут использоваться как клинкер для изготовления высших марок жаростойких высоко глиноземистых цементов, имеющие большой спрос для производства жаростойких огнеупорных изделий, бетонов и торкретмасс.

На 1 тонну высокофосфористого шлака может быть получено 300 кг двойного суперфосфата и 600-700 кг высокоглиноземистого шлака. Дальнейшая обработка стали осуществляется вне печи, в установках доводки металла (УДМ), ковш-печи, вакууматорах, а разливка производится на МНЛЗ квадратного и слябового типа.

На территории Томской области расположено Таловское месторождение бурых углей, запас которых оценивается в 3,6 млрд. тонн, которые могут рассматриваться в качестве восстановителей при получении металлизованного железорудного сырья. Однако выход смол этих углей составляет около 18%, что не позволяет их использование в неподготовленном виде в металлургическом производстве. Необходимо получение из них полукоксов с содержанием летучих порядка 5-8 %. Работа на таком полукоксе обеспечивает снижение температуры начала восстановления, увеличение в несколько раз скорости химических реакций за счет высокой степени адсорбции и диффузии водорода на поверхности руды и углеродистого материала. Это дает возможность использования получаемых полукоксов бурых углей для изготовления металлизованных окатышей в шахтных печах при пониженных температурах, что обеспечивает высокую прочность агрегатов, пониженную спекаемость и облегчение процесса восстановления оксидов железа в целом.

Выводы:

- 1. При использовании высокофосфористой железной руды Бакчарского месторождения в металлургической промышленности должна быть подобрана специфичная технология её переработки, с целью обеспечения получения качественной малофосфористой стали.
- 2. Наиболее целесообразным вариантом получения качественной стали ($P \approx 0.01$ %) является вариант 5 (таблица 1) с переплавом лома, чугуна и металлизованных окатышей железорудного концентрата Бакчарского месторождения (в соотношении 1:1:2 соответственно) с предварительным скачиванием первичного шлака (до 95%) и последующим наведением железистоизвесткового шлака для наибольшего извлечения фосфора.

Библиографический список

1. Ярошенко, Ю.Г. Энергоэффективные и ресурсосберегающие техно-

логии черной металлургии / Ю.Г. Ярошенко, Я.М. Гордон, И.Ю. Ходоровская. – Екатеринбург: ООО «УИПЦ», 2012. - 670 с.

- 2. Чинакал, Н.А. Перспективы использования руды Бакчарского железорудного месторождения / Н.А. Чинакал // Материалы научно-практической конференции. Том І. Полезные ископаемые. — Томск: Издательство Томского политехнического университета, 2008.— С. 283-286.
- 3. Коневский, М. Р. Фосфор в химии и металлургии / М.Р. Конвский // Москва : НИИ ТЭ ХИМ, 1980. 30 с.
- 4. Ваггаман, В. Фосфорная кислота, фосфориты и фосфорные удобрения / В. Ваггаман // Москва, 1975.

УДК 669.168.782.046

ИССЛЕДОВАНИЕ МЕХАНИЗМА ВЗАИМОДЕЙСТВИЯ КОМПОНЕНТОВ ПРИ ВЫПЛАВКЕ ФЕРРОСИЛИЦИЯ

Топина К.В., Чернева Е.Н., Хорощенко А.А., Полях О.А., Ноздрин И.В.

Сибирский государственный индустриальный университет, г. Новокузнецк, e-mail: kafcmet@sibsiu.ru

Определены особенности влияния расплава железа на механизм взаимодействия компонентов системы Fe-Si-C-O. Приведена схема взаимодействий, имеющих место в ванне руднотермической печи при плавке ферросилиция.

Ключевые слова: ферросилиций, руднотермическая печь, физико-химические процессы.

Технология плавки ферросилиция в руднотермических печах аналогична выплавке кремния. Основное отличие заключается во введении в шихту железной стружки, что приводит к значительным изменениям технологического режима и структуры схемы физико-химических взаимодействий в ванне печи. Схемы механизма взаимодействий, протекающих при получении ферросилиция подробно систематизированы и описаны в работах [1-3]. Целью настоящей работы является ее дополнение за счет новых данных, полученных экспериментальным и расчетным путем.

Наиболее важной особенностью по сравнению с плавкой кремния является появление жидкого металлического расплава при низких температурах (≤1600 К), что обусловливает: изменение последовательности протекания химических реакций; увеличение их скорость за счет роста межфазной реакционной поверхности; ускорение доставки компонентов в реакционную зону путем диффузии через жидкий металлический расплав; растворение карбидных пленок, образующихся на поверхности и в порах углеродистого восстановителя и затрудняющих доставку монооксида кремния к атомам углерода.

Появляются новые физико-химические процессы, такие как растворение углерода в металлическом расплаве, взаимодействие железоуглеродистого расплава с карбидом кремния, приводящее к его разрушению и пере-

СОДЕРЖАНИЕ

І ЕСТЕСТВЕННЫЕ НАУКИ	2
КОНСТАНТЫ ПЛАВЛЕНИЯ БРОМИДА ЭРБИЯ (Ш) Чумачкова Е.Г., Бендре Ю.В., Горюшкин В.Ф.	3
ИЗУЧЕНИЕ ЭФФЕКТА ДОБАВОК СКАНДИЯ И ЦИРКОНИЯ НА ПРОЧНОСТНЫЕ СВОЙСТВА СПЛАВОВ СИСТЕМЫ AL-MG-SI С ИЗБЫТКОМ КРЕМНИЯ ПОСЛЕ МНОГОСТУПЕНЧАТОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ Зорин И.А., Осинцев К.А., Лапшов М.А., Коновалов С.В	7
БИОМАССА СЕМЕЙСТВ ЖЕСТКОКРЫЛЫХ ПРИРОДНОГО ПАРКА «ДОНСКОЙ» ВОЛГОГРАДСКОЙ ОБЛАСТИ <i>Близгарева С.А., Брехов О.Г.</i>	11
МОРФОЛОГИЯ ПОВЕРХНОСТИ И МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ РЬ МАРКИ С2, РАЗРУШЕННОГО ПРИ ВОЗДЕЙСТВИИ МАГНИТНОГО ПОЛЯ Серебрякова А.А., Шляров В.В. Загуляев Д.В.	19
ВЛИЯНИЕ ВЫСОКИХ ТЕМПЕРАТУР НА СТРОЕНИЕ ОЦК-КРИСТАЛЛА ЖЕЛЕЗА <i>Гостевская А.Н., Маркидонов А.В.</i>	22
ХАРАКТЕР БЛИЖНЕГО УПОРЯДОЧЕНИЯ ШУНГИТОВОГО УГЛЕРОДА Киселев В.В., Логинова С.В	26
СТРУКТУРА И СВОЙСТВА ПОКРЫТИЙ ИЗ ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ FeCoCrNiMn И FeCoCrNaAl Коновалов С.В., Ефимов М.О., Шлярова Ю.А., Черепанова Г.И., Громов В.Е., Панченко И.А.	29
ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА УРАВНЕНИЯ ЭЙНШТЕЙНА ДЛЯ ФОТОЭФФЕКТА Кузнецова В.А., Панова В.С., Коваленко В.В.	32
УВЕЛИЧЕНИЕ УСТАЛОСТНОЙ ДОЛГОВЕЧНОСТИ СПЛАВА АК5М2 ПУТЕМ НАНЕСЕНИЯ ПЛЕНКИ ТІ	20
Шляров В.В., Серебрякова А.А., Шлярова Ю.А., Загуляев Д.В	
УСТАЛОСТНОЕ РАЗРУШЕНИЕ ТЕХНИЧЕСКИ ЧИСТОГО ТИТАНА МАРКИ ВТ1-0 В МАГНИТНОМ ПОЛЕ Шляров В.В., Серебрякова А.А., Аксенова К.В., Шлярова Ю.А	
МОДИФИЦИРОВАНИЕ ПОВЕРХНОСТНОГО СЛОЯ ВЫСОКОЭНТРОПИЙНОГО СПЛАВА ЭЛЕКТРОННО-ИОННО-ПЛАЗМЕННЫМ МЕТОДОМ	
Ефимов М.О., Шлярова Ю.А., Панченко И.А., Громов В.Е.	50

СОДЕРЖАНИЕ СЕЛЕНА В ПОЧВАХ И РАСТЕНИЯХ: РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ (ОБЗОР) Самохвалова О.С., Семина И.С	53
ДЕФОРМАЦИОННОЕ УПРОЧНЕНИЯ РЕЛЬСОВОЙ СТАЛИ ПОРФирьев М.А., Юрьев А.А., Кормышев В.Е., Шлярова Ю.А., Громов В.Е	
ВЫБОР МЕТОДИКИ ЭКСПЕРИМЕНТА ДЛЯ ПОИСКА ОПТИМАЛЬНОГО ХИМИЧЕСКОГО СОСТАВА БЕЙНИТНОЙ РЕЛЬСОВОЙ СТАЛИ <i>Шевченко Р.А., Сафонов С.О., Лихоузов А.М., Долгополов А.Е., Шевченко В.В.</i>	62
II МЕТАЛЛУРГИЧЕСКИЕ ПРОЦЕССЫ, ТЕХНОЛОГИИ, МАТЕРИАЛЫ И ОБОРУДОВАНИЕ	67
ИССЛЕДОВАНИЕ СВОЙСТВ ХВОСТОВ ОБОГАЩЕНИЯ ЖЕЛЕЗНОЙ РУДЫ Хомутинников В.А., Дерябина Ю.А., Лукин Е.В., Фейлер Д.Т., Фейлер С.В	67
ТЕХНОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ВЫПЛАВКИ БЕЙНИТНОЙ СТАЛИ В ИНДУКЦИОННОЙ ПЕЧИ Сафонов С.О., Шевченко Р.А., Долгополов А.Е., Лихоузов А.М., Наумченко Д.Н	70
Сифонов С.О., Шевченко Т.А., Долгонолов А.Е., Михоузов А.М., Наумченко Д.П СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ ТЕПЛОИЗОЛИРУЮЩИХ СМЕСЕЙ ДЛЯ ЧЕРНОЙ МЕТАЛЛУРГИИ Фейлер Д.Т., Хомутинников В.А., Фейлер С.В.	
ДЕСУЛЬФУРАЦИЯ СТАЛИ В СОВРЕМЕННОМ СТАЛЕПЛАВИЛЬНОМ ПРОЦЕССЕ Преснякова Н.В., Пресняков Н.И., Дмитриенко В.И	77
ПРИМЕНЕНИЕ ФЕРРОСПЛАВНОГО ГАЗА В КАЧЕСТВЕ ТОПЛИВА Закурдаев Н.В., Новиков А.Ю., Дмитриенко В.И	
ИССЛЕДОВАНИЕ ТЕРМОДИНАМИЧЕСКИХ УСЛОВИЙ ИНТЕНСИФИКАЦИИ ВОССТАНОВЛЕНИЯ ЖЕЛЕЗОРУДНОГО СЫРЬЯ УГЛЕРОДОМ Безрукова Е.С., Чернева Е.Н., Полях О.А., Ноздрин И.В., Строкина И.В	
ОПРЕДЕЛЕНИЕ КРИТИЧЕСКИХ РАЗМЕРОВ ЧАСТИЦ ОКСИДА ВОЛЬФРАМА ДЛЯ ПЕРЕРАБОТКИ В ПЛАЗМЕННОМ РЕАКТОРЕ Лепихов В.С., Ильина Ю.В., Марденова А.А., Ноздрин И.В	
ИСПОЛЬЗОВАНИЕ ИНФОРМАЦИОННО-ОБУЧАЮЩЕЙ СИСТЕМЫ «АЛЮМИНЩИК» ДЛЯ ОПТИМИЗАЦИИ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ	0.4
Мартусевич Е.А., Говриленко Д.А., Митягин В.О., Ноздрин И.В ИССЛЕДОВАНИЕ ОСОБЕННОСТЕЙ МЕХАНИЗМА СИНТЕЗА КАРБИДА КРЕМНИЯ Топина К.В., Сюльдина С.А., Ядыкина М.А., Полях О.А., Ноздрин И.В	
ВАРИАНТЫ ПЕРЕРАБОТКИ ВЫСОКОФОСФОРИСТОЙ ЖЕЛЕЗНОЙ РУДЫ БАКЧАРСКОГО МЕСТОРОЖДЕНИЯ Топина К.В., Строкина И.В., Ноздрин И.В., Полях О.А	
ИССЛЕДОВАНИЕ МЕХАНИЗМА ВЗАИМОДЕЙСТВИЯ КОМПОНЕНТОВ ПРИ ВЫПЛАВКЕ ФЕРРОСИЛИЦИЯ Топина К.В., Чернева Е.Н., Хорошенко А.А., Полях О.А., Ноздрин И.В.,	

СОВЕРШЕНСТВОВАНИЕ ТЕХНИЧЕСКИХ МЕРОПРИЯТИЙ ПО ОРГАНИЗАЦИИ ПРОИЗВОДСТВА ЭЛЕКТРОКОРУНДА МАРКИ ЭХН	
Сюльдина С.А., Полях О.А	108
РАЗРАБОТКА ТЕХНИЧЕСКИХ МЕРОПРИЯТИЙ ПО МОДЕРНИЗАЦИИ УСТАНОВКИ СУХОГО ТУШЕНИЯ КОКСА С УВЕЛИЧЕНИЕМ ОБЪЕМА КАМЕРЫ ТУШЕНИЯ Ядыкина М.А., Полях О.А	111
НОВЫЕ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ МЕТАЛЛОИЗДЕЛИЙ ИЗ ВТОРИЧНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ Новиков А.М., Поливко А.С., Усольцев А.А., Князев С.В., Кибко Н.В	114
ТЕХНОЛОГИИ ПОЛУЧЕНИЯ АЛЮМОМАТРИЧНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ Васильева И.С., Оськин А.И., Князев С.В., Усольцев А.А., Кибко Н.В	119
АДДИТИВНЫЕ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ МЕТАЛЛОИЗДЕЛИЙ Маракулина М.Ю., Зайцева М.М., Топоев А.А., Князев С.В., Усольцев А.А	125
МОДЕРНИЗАЦИЯ И АВТОМАТИЗАЦИЯ СМЕСЕПРИГОТОВИТЕЛЬНОГО УЧАСТКА В УСЛОВИЯХ ЛИТЕЙНОГО ЦЕХА АО «ЕВРАЗ ЗСМК» Щапина М.Е., Акулина Н.В., Киселев П.В., Князев С.В., Усольцев А.А	132
МОДЕРНИЗАЦИЯ ФОРМОВОЧНОГО УЧАСТКА СТАЛЬНОГО ЛИТЬЯ В УСЛОВИЯХ ЛИТЕЙНОГО ЦЕХА АО «ЕВРАЗ ЗСМК» Токтарев А.А., Сурков И.В., Киселев П.В., Князев С.В., Усольцев А.А	137
МОДЕРНИЗАЦИЯ ФОРМОВОЧНОГО УЧАСТКА ЧУГУННОГО ЛИТЬЯ В УСЛОВИЯХ ЛИТЕЙНОГО ЦЕХА АО «ЕВРАЗ ЗСМК» Музыченко М.В ^I , Хатнянский Е.А., Киселев П.В., Князев С.В., Усольцев А.А.	
РЕГЕНЕРАЦИЯ ФОРМОВОЧНЫХ СМЕСЕЙ В УСЛОВИЯХ ЛИТЕЙНОГО ЦЕХА АО «ЕВРАЗ ЗСМК» Кузьмич А.В., Чередниченко А.В., Киселев П.В., Князев С.В.,	
Усольцев А.А. СОВЕРШЕНСТВОВАНИЕ МЕТАЛЛОТЕРМИТНОЙ ТЕХНОЛОГИИ ДЛЯ СВАРКИ РЕЛЬСОВ	148
Морозов М.А., Маракулина М.Ю., Усольцев А.А., Князев С.В	154
СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ СВАРКИ И НАПЛАВКИ ПОД МАРГАНЦОВИСТЫМ ФЛЮСОМ Михно А.Р., Морозов М.А., Маракулина М.Ю., Усольцев А.А., Князев С.В	160
ОЦЕНКА ВЛИЯНИЯ АСИММЕТРИИ ОЧАГА ДЕФОРМАЦИИ ГОРЯЧЕЙ ПРОКАТКИ НА ИЗГИБ ПОЛОСЫ ПРИ ВЫХОДЕ ИЗ МЕЖВАЛКОВОГО ПРОСТРАНСТВА	
Клепов Д.Н., Зорин И.А., Яшин В.В., Арышенский Е.В	163
ИССЛЕДОВАНИЕ ТОНКОЙ СТРУКТУРЫ В ВЫСОКОМАГНИЕВЫХ АЛЮМИНИЕВЫХ ЭКОНОМНОЛЕГИРОВАННЫХ СКАНДИЕМ СПЛАВАХ С ДОБАВЛЕНИЕМ ПЕРЕХОДНЫХ МЕТАЛЛОВ ПОСЛЕ ТЕРМИЧЕСКОЙ ОБРАБОТКИ	
носяе ты ми пеской обгавотки Зорин И.А., Клепов Л.Н., Рагазин А.А., Арышенский В.Ю	167

ПРОГНОЗИРОВАНИЕ ФАЗОВОГО СОСТАВА ВЫСОКОЭНТРОПИЙНОГО СПЛАВА СоСгFехМп(40-х)Ni С ПОМОЩЬЮ РАСЧЕТА ФЕНОМЕНОЛОГИЧЕСКИХ КРИТЕРИЕВ Панова В.С., Кузнецова В.А., Осинцев К.А., Коновалов С.В.,	
Панченко И.А	172
СТРУКТУРА ВЫСОКОЭНТРОПИЙНОГО СПЛАВА СИСТЕМЫ CoCrFeMnNi Панченко И.А., Коновалов С.В., Гостевская А.Н., Дробышев В.К	174
ВЛИЯНИЕ НАВОДОРОЖИВАНИЯ НА СТРУКТУРУ КРУПНОГАБАРИТНЫХ СЛИТКОВ ИЗ ЭВТЕКТИЧЕСКОГО СИЛУМИНА Прудников А.Н., Прудников В.А., Рексиус В.С	
ВОЗДЕЙСТВИЕ СТАРЕНИЯ НА ЛИНЕЙНОЕ РАСШИРЕНИЕ ТРАКТОРНОГО ПОРШНЯ ИЗ СПЛАВА АК21M2,5H2,5 Прудников А.Н., Закирова Г.К	181
МИКРОСТРУКТУРА СТАЛИ 10 ПОСЛЕ ДЕФОРМАЦИОННОЙ ТЕРМОЦИКЛИЧЕСКОЙ ОБРАБОТКИ И ОТЖИГА <i>Прудников А.Н., Закирова Ш.К.</i>	184
ИССЛЕДОВАНИЕ КОЭФФИЦИЕНТА ТЕПЛОПЕРЕДАЧИ ВСТРОЕННОГО ТЕПЛООБМЕННИКА РЕКТИФИКАЦИОННОЙ КОЛОННЫ <i>Баяндина М.М., Кустов А.В.</i>	187
ПРИМЕНЕНИЕ АДДИТИВНЫХ ТЕХНОЛОГИЙ В УСЛОВИЯХ ЛИТЕЙНОГО ЦЕХА АО «ЕВРАЗ ЗСМК» Князев С.В., Куценко А.А., Нечепорук А.И., Сорокин А.А.	192
СИСТЕМА ПРИТОЧНО-ВЫТЯЖНОЙ ВЕНТИЛЯЦИИ ДЛЯ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ И КОМФОРТА В ОБЖИМНОМ ЦЕХЕ Куценко А.А., Назаров М.А.	
ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ПУТЕМ ЗАМЕНЫ ТЯГОДУТЬЕВЫХ АГРЕГАТОВ ГО МОЗ НА АСПИРАЦИОННЫЕ ГАЗО-ЖИДКОСТНЫЕ УСТАНОВКИ	
Куценко А.А., Назаров М.А	198
ИССЛЕДОВАНИЕ МИКРОСТРУКТУРЫ АЛЮМИНИЕВОГО СПЛАВА НА ОСНОВЕ СИСТЕМЫ Al-Zn-Mg-Cu Дробышев В.К., Лабунский Д.Н., Коновалов С.В., Панченко И.А	201
ВЛИЯНИЕ КОМПЛЕКСНЫХ ВОССТАНОВИТЕЛЕЙ НА ЭФФЕКТИВНОСТЬ МЕТАЛЛОТЕРМИЧЕСКОГО ПРОЦЕССА ВОССТАНОВЛЕНИЯ МАРГАНЦА Сафонов С.О., Лопатина А.О., Дида Н.И., Савичева Д.Н., Тархнишвили Г.Э	204
ПРОИЗВОДСТВО СОРТОВЫХ ПРОФИЛЕЙ ПО ТЕХНОЛОГИИ ПРОКАТКИ-РАЗДЕЛЕНИЯ Вахроломеев В.А., Фастыковский А.Р.	210
ЦИФРОВОЙ ПОДХОД В ОЦЕНКЕ ПРОЧНОСТИ ОБОРУДОВАНИЯ ПРОКАТНОЙ КЛЕТИ	210
Раковский В.С., Чернова А.А., Наумченко Д.М., Щербак А.Н.,	213

ОБЕЗУГЛЕРОЖИВАНИЕ РЕЛЬСОВЫХ СТАЛЕЙ Пимахин А.В., Осколкова Т.Н.	218
ВЛИЯНИЕ РЕЖИМА ГОМОГЕНИЗАЦИИ НА КОЭФФИЦИЕНТ ТРАНСФОРМАЦИИ ФАЗЫ Al₅FeSi В ЦИЛИНДРИЧЕСКИХ СЛИТКАХ СПЛАВОВ СИСТЕМЫ Al-Mg—Si Коробейников Д.В., Попова М.В.	223
ИССЛЕДОВАНИЕ СТРУКТУРЫ И СВОЙСТВ СПЛАВА AL-15% SI ПОСЛЕ МОДИФИЦИРОВАНИЯ ВОДОРОДОМ Ломиворотов Н.П., Попова М.В.	228
АНАЛИЗ СОВРЕМЕННОГО СОСТОЯНИЯ ПРОБЛЕМЫ МОДИФИЦИРОВАНИЯ СИЛУМИНОВ ЗАЭВТЕКТИЧЕСКОГО СОСТАВА <i>Ломиворотов Н.П., Полунин А.М., Попова М.В.</i>	234
ОСОБЕННОСТИ МЕТАЛЛОГРАФИИ И ТЕПЛОВОЕ РАСШИРЕНИЕ МЕДИСТЫХ СИЛУМИНОВ Полунин А.М., Попова М.В	240
ОСОБЕННОСТИ СТРУКТУРЫ И СВОЙСТВ СПЛАВОВ Al-Mg-Si Попова М.В., Михеева М.В., Караваева К.А	245
ВЛИЯНИЕ ВИДА ДЕФОРМАЦИИ НА СВОЙСТВА ЗАГОТОВОК ИЗ ЛЕГИРОВАННОГО ЗАЭВТЕКТИЧЕСКОГО СИЛУМИНА Прудников В.А., Рексиус В.С., Прудников А.Н	250
СТРУКТУРУ И СВОЙСТВА СЛИТКОВ И ПРЕССОВОК ИЗ ЛЕГИРОВАННОГО ЗАЭВТЕКТИЧЕСКОГО СИЛУМИНА <i>Прудников В.А., Шелтреков М.О., Прудников А.Н.</i>	253
ИЗУЧЕНИЕ ВЛИЯНИЯ ХИМИЧЕСКОГО СОСТАВА И ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА СТРУКТУРУ И СВОЙСТВА РЕЛЬСОВОЙ СТАЛИ Алексеева Е.А., Кибко Н.В.	257
ИССЛЕДОВАНИЕ ЭЛЕКТРОДУГОВЫХ ПОКРЫТИЙ ИЗ ВЫСОКОЭНТРОПИЙНЫХ ПОРОШКОВЫХ ПРОВОЛОК Михно А.Р., Махнев И.А., Крюков Р.Е., Панченко И.А	260
5D-ПЕЧАТЬ. АДДИТИВНОЕ ПРОИЗВОДСТВО Коток М.М., Коновалов С.В., Панченко И.А	264
III ЭКОЛОГИЯ. БЕЗОПАСНОСТЬ. РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ	266
ВСКРЫШНЫЕ ПОРОДЫ УГЛЕДОБЫЧИ – ПЕРСПЕКТИВНОЕ СЫРЬЕ ДЛЯ ПРОИЗВОДСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ <i>Царева Е.Е., Коротков С.Г.</i>	266
АНАЛИЗ ТЕХНОЛОГИИ ОБРАЩЕНИЯ СО ВСКРЫШНЫМИ ПОРОДАМИ Царева Е.Е., Коротков С.Г	270
МАЛАКОФАУНИСТИЧЕСКИЙ АНАЛИЗ – КАК ОДИН ИЗ МЕТОДОВ ДИАГНОСТИКИ И КОРРЕЛЯЦИИ ПАЛЕОГЕОГРАФИЧЕСКИХ СОБЫТИЙ	
Лысенко Н Е . Темепина И И	273

ОЦЕНКА ТЕХНОЛОГИЧЕСКИХ ОПЕРАЦИЙ УЧАСТКА ПЕРЕРАБОТКИ ЛОМА ОТРАБОТАННЫХ ОГНЕУПОРНЫХ ФУТЕРОВОК <i>Рожкова О.А., Павловец В.М.</i>	276
ОСОБЕННОСТИ ПОДГОТОВКИ СЫРЬЕВОЙ СМЕСИ ДЛЯ ПРОИЗВОДСТВА ТОРКРЕТ ПОКРЫТИЙ Рожкова О.А., Павловец В.М.	284
ОЦЕНКА ПРОИЗВОДСТВЕННЫХ ОПЕРАЦИЙ ТЕХНИКИ РЕГЕНЕРАЦИИ ОТРАБОТАННОГО МИНЕРАЛЬНОГО МАСЛА В ПРОМЫШЛЕННОСТИ Толстикова Ю.Ф., Павловец В.М.	291
ИССЛЕДОВАНИЕ ГРАНИЦ ВЯЗКОСТИ И ЗАТВЕРДЕВАНИЯ МАСС НА ОСНОВЕ ОТРАБОТАННОГО МИНЕРАЛЬНОГО МАСЛА <i>Толстикова Ю.Ф., Пабловец В.М.</i>	297
ИССЛЕДОВАНИЕ ХИМИЧЕСКОГО СОСТАВА ДОРОЖНОЙ ПЫЛИ Г.ЧЕРЕПОВЦА Хорошилов А.П., Пономарева И.В	303
ПОСТРОЕНИЕ МОДЕЛИ ФОРМИРОВАНИЯ КЛИМАТА Федореев Д.А., Бабичева Н.Б	
ПРОБЛЕМА ИСПОЛЬЗОВАНИЯ РАСТИТЕЛЬНЫХ ОТХОДОВ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСТВА В КАЧЕСТВЕ СЫРЬЕВОЙ ОСНОВЫ ПРОМЫШЛЕННОСТИ Целлер Е.Н., Павловец В.М.	309
ИССЛЕДОВАНИЕ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ТОПЛИВНЫХ БРИКЕТОВ НА ОСНОВЕ РАСТИТЕЛЬНЫХ ОТХОДОВ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСВА Целлер Е.Н., Павловец В.М.	314
РОЛЬ ДРОБИЛЬНОГО ОБОРУДОВАНИЯ В ТЕХНОЛОГИИ ПЕРЕРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ ШЛАКОВ Петрунин Ю.С., Павловец В.М.	320
ВЛИЯНИЕ СТЕПЕНИ ИЗМЕЛЬЧЕНИЯ МЕТАЛЛУРГИЧЕСКИХ ШЛАКОВ НА КОЛИЧЕСТВО ИЗВЛЕКАЕМЫХ МЕТАЛЛОВКЛЮЧЕНИЙ Петрунин Ю.С., Павловец В.М	327
ПРОБЛЕМА КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ УГЛЕШЛАМОВ И ПОЛУЧЕНИЕ НА ИХ ОСНОВЕ ПРОМЫШЛЕННОЙ ПРОДУКЦИИ Аликперов Р.Ч., Павловец В.М	332
ПЕРСПЕКТИВЫ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ УГЛЕШЛАМОВ ОБОГАТИТЕЛЬНЫХ ПРЕДПРИЯТИЙ КЕМЕРОВСКОЙ ОБЛАСТИ Аликперов Р. Ч., Павловец В.М	338
ИССЛЕДОВАНИЕ СТРУКТУРНОЙ КОРРЕЛЯЦИИ МЕЖДУ ОБЪЕМНЫМИ ИЗМЕНЕНИЯМИ НАПЫЛЕННОГО СЛОЯ ШИХТЫ И ПОРИСТОСТЬЮ ЖЕЛЕЗОРУДНЫХ ОКАТЫШЕЙ	
Платова Г.А., Павловеи В.М.,	344

ОСОБЕННОСТИ ПОРОВОЙ СТРУКТУРЫ ОКАТЫШЕЙ, ПОЛУЧЕННЫХ ПО ТЕХНОЛОГИИ ПРИНУДИТЕЛЬНОГО	
ЗАРОДЫШЕОБРАЗОВАНИЯ	351
Платова Г.А., Павловец В.М	331
ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОСНОВНЫХ ТЕХНОЛОГИЧЕСКИХ	
ПАРАМЕТРОВ ПРЕССОВАНИЯ НА ПРОЧНОСТНЫЕ ПОКАЗАТЕЛИ	
ПРЕССОВОК, ПОЛУЧЕННЫХ ИЗ МЕТАЛЛУРГИЧЕСКИХ ШЛАКОВ	
Паутов З.В., Павловец В.М.	360
ПРЕДПРОЕКТНЫЙ АНАЛИЗ ТЕХНОЛОГИЙ ПЕРЕРАБОТКИ	
ШЛАКОВ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА	
Паутов З.В., Павловец В.М.	366
НЕКОТОРЫЕ ТЕХНОЛОГИЧЕСКИЕ ВОЗМОЖНОСТИ	
ПРОЦЕССА ТОРКРЕТИРОВАНИЯ ОГНЕУПОРНЫХ	
ФУТЕРОВОК И СТРОИТЕЛЬНЫХ ОГРАЖДЕНИЙ	
Новикова К.И., Павловец В.М.	374

Научное издание

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ТЕХНИЧЕСКИЕ НАУКИ

Выпуск 27

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых

Часть І

Под общей редакцией С.В. Коновалова Технический редактор Г.А. Морина Компьютерная верстка Н.В. Ознобихина

Подписано в печать 25.04.2023 г. Формат бумаги 60х84 1/16. Бумага писчая. Печать офсетная. Усл. печ. л. 25,1 Уч.-изд. л. 227,9 Тираж 300 экз. Заказ № 91

Сибирский государственный индустриальный университет 654007, г. Новокузнецк, ул. Кирова, 42 Издательский центр СибГИУ