Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет»

Посвящается 100-летию со дня рождения ректора СМИ, доктора технических наук, профессора Н.В.Толстогузова

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ТЕХНИЧЕСКИЕ НАУКИ

ВЫПУСК 25

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых 12 – 14 мая 2021 г.

ЧАСТЬ V

Под общей редакцией профессора Н.А. Козырева

Новокузнецк 2021

Редакционная коллегия:

д-р техн. наук, профессор Козырев Н.А., д-р техн. наук, профессор Темлянцев М.В., д-р техн. наук, профессор Кулаков С.М., д-р техн. наук, профессор Фрянов В.Н., канд. техн. наук, доцент Алешина Е.А., канд. техн. наук, доцент Риб С.В.

H 340

Наука и молодежь: проблемы, поиски, решения: труды Всероссийской научной конференции студентов, аспирантов и молодых ученых / Министерство науки и высшего образования РФ, Сиб. гос. индустр. ун-т; под общ. ред. Н.А. Козырева. — Новокузнецк: Издательский центр СибГИУ, 2021. — Вып. 25. — Ч. V. Технические науки. — 456 с., ил.

Представлены труды Всероссийской научной конференции студентов, аспирантов и молодых ученых по результатам научно-исследовательских работ. Пятая часть сборника посвящена актуальным вопросам в области новых информационных технологий и систем автоматизации управления; строительства; перспективных технологий разработки месторождений полезных ископаемых; металлургических процессов, технологии, материалов и оборудования.

Материалы сборника представляют интерес для научных и научнотехнических работников, преподавателей, аспирантов и студентов вузов.

осуществлять следующий комплекс мероприятий:

- мероприятия по переводу общественного транспорта на газомоторное топливо;
- строительство сетей газоснабжения для подключения жилых домов частного сектора;
- создание новейших очистных сооружений и внедрение их на всех предприятиях;
 - модернизация системы мониторинга.

Библиографический список

- 1. Доклад о состоянии и охране окружающей среды Кемеровской области Кузбасса в 2020 году. [Электронный ресурс]: режим доступа: file:///C:/Users/dmitr/Desktop/1/doklad_2020.pdf
- 2. Новокузнецк мегаполис с непростой экологической ситуацией. [Электронный ресурс]: режим доступа: https://greenologia.ru/eko-problemy/goroda/novokuzneck.html
- 3. Анализ основных источников выбросов загрязняющих веществ в атмосферный воздух при добыче угля открытым способом / Гилева Е.Н.// Наука и молодежь: проблемы, поиски, решения: труды Всероссийской научной конференции студентов, аспирантов и молодых ученых, 12-14 мая 2021 г. Новокузнецк: Изд. центр СибГИУ, 2021. Вып. 25. Ч. 1: Естественные и технические науки. С. 228-231. URL: http://library.sibsiu.ru.
- 4. Анализ основных источников выбросов загрязняющих веществ в атмосферный воздух при производственной деятельности угольной шахты / Гилева Е.Н. // Наука и молодежь: проблемы, поиски, решения: труды Всероссийской научной конференции студентов, аспирантов и молодых ученых, 12-14 мая 2021 г. Новокузнецк: Изд. центр СибГИУ, 2021. Вып. 25. Ч. 1: Естественные и технические науки. С. 228-231. URL: http://library.sibsiu.ru.

УДК 622.831.325.3:658.567.1

РАЗРАБОТКА МЕРОПРИЯТИЙ ПО ИСПОЛЬЗОВАНИЮ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ В УСЛОВИЯХ УГОЛЬНЫХ ШАХТ КУЗБАССА

Альвинский Я.А., Борзых Д.М. Научный руководитель: канд. техн. наук, доцент Никитина А.М.

Сибирский государственный индустриальный университет, г. Новокузнецк, e-mail:alvinskiy_yaa@mail.ru

В данной статье приведен анализ причин изменения климата, представлены примеры использования источников энергии, а также рациональное использование углеводородов.

Ключевые слова: метан, выбросы, парниковый эффект, Кузнецкий угольный бассейн, получение тепловой энергии, сжигание метана, экономический эффект, рациональное использование.

В настоящее время действующая модель энергопотребления основана на возрастании энтропии, что приводит к необратимым изменениям мировой экосистемы. Изменение климата уже сегодня приводит к многочисленным случаям экстремальной погоды. Согласно прогнозам ученых, в ближайшие десятилетия климатические изменения будут нарастать во всех регионах планеты, в частности, будут увеличиваться периоды длительной жары, и сокращаться холодные сезоны.

В целях борьбы с изменением климата и его негативными последствиями 197 стран приняли Парижское соглашение на Конференции по изменению климата в Париже 12 декабря 2015 года. Это соглашение направлено на существенное сокращение глобальных выбросов парниковых газов и ограничение повышения глобальной температуры в XXI веке до 2 градусов Цельсия [1].

Парниковый эффект главная причина глобального потепления и таяния ледников, которыми обеспокоена мировая общественность. Парниковый эффект образуют углеродосодержащие газы, такие как CO₂, который привлекал максимум внимания экологов до недавнего времени. Последние исследования показали, что диоксид углерода не самый опасный из парниковых газов. Исследования американских ученых показали [1,3], что более эффективный в теплоудержании парниковый газ — CH₄, более известный всем как «метан», способный удерживать до 30 раз больше тепла в атмосфере. Жизнедеятельность человека приводит к увеличению выбросов метана в атмосферу.

Огромные выбросы метана происходят при ведении горных работ по добыче угля и нефти, где данный углеводород является попутным, но довольно усложняющим добычные работы и промысел, полезным ископаемым, что отражено на рисунке 1.

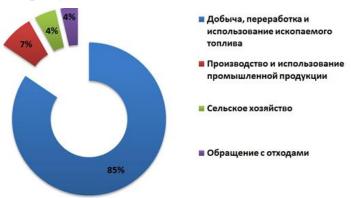


Рисунок 1 - Структура выбросов парниковых газов России, %

Например, на нефтяных платформах проблему метана решают методом факельного выжигания, представленном рисунке 2.

Рисунок 2 – Факельное выжигание метана на нефтяных платформах [2]

На данный момент происходит четвертый энергетический переход, предусматривающий снижение энтропии за счет аккумулирования рассеянной энергии и локализации продуктов ее производства. В мире реализуются крупные проекты по развитию возобновляемой энергетики (ВИЭ), производства, транспортировки и использования водорода в качестве топлива для различных видов транспорта, производства «зеленого» углеводородного топлива, газификации жилого фонда. Япония, Германия, США, Китай и ряд других стран приняли «Зеленые» энергетические стратегии, смысл которых ясно изложен в Энергетической стратегии Европы [1].

В связи с этим, в работе предлагается улавливание и сжигание метана на угольных шахтах Кузбасса, с целью получения тепловой энергии. Так, например, на угольных шахтах исходящая струя выбрасывает в атмосферу газ метан, который может быть переработан для получения тепловой энергии путем сжигания, создавая выбросы экологически более чистого CO_2 , менее опасного, чем CH_4 .

Получение тепла за счет установки газовых калориферов, сжигающих метан из исходящей струи вентиляции, позволит снизить затраты электроэнергии на отопление, как поверхностного комплекса зданий и сооружений, так и нагрева свежей струи при вентиляции выработок в сезон отрицательных температур. Графическая схема метода представлена на рисунке 3.

При сжигании 1 м³ природного газа можно получить до 7кВт тепловой энергии, что можно сравнить с получением тепла из электроэнергии, где на 1кВт требуется 1,03 кВт электроэнергии, данное число может изменяться в большую сторону в зависимости от КПД калориферов. Также нельзя не обратить внимание на то, что на производство 1 кВт электроэнергии требуется от 2 и более кВт тепловой энергии.

При средней газоносности пластов Кузнецкого бассейна от 5 до 7 м 3 /т угля и средних суточных уровнях добычи в 6-8 тыс. тонн, можно получать до 56 тыс. м 3 метана или до 390 тыс. кВт тепловой энергии в сутки, что сравнимо с теплотой сжигания около 100 тонн угля.

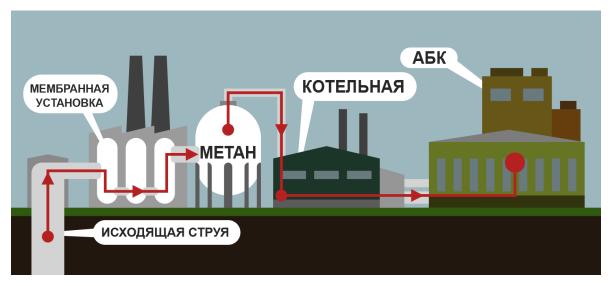


Рисунок 3 – Графическая схема метода улавливания и сжигания метана

Метод улавливания и сжигания метана носит не только экологическое направление, но и является шагом к более рациональному использованию углеводородов. Также это техническое решение позволит горнодобывающим предприятиям сэкономить средства, затрачиваемые на электроэнергию.

Таким образом, внедрение данного способа на шахтах Кузбасса позволит снизить темпы роста парникового эффекта а также, получить экономический эффект за счет снижения затрат электроэнергии на отопление административно-бытового комбината.

Библиографический список

- 1. Содержание метана в атмосфере опасно повышается [Электронный ресурс]: сайт.— Режим доступа: https://scientificrussia.ru/articles/soderzhaniemeta.., свободный (дата обращения: 27.10.2021)
- 2. Противофонтанная безопасность РФ [Электронный ресурс]: сайт.— Режим доступа: https://oilgazfontan.livejournal.com/tag/MCП?utm_medi, свободный (дата обращения: 27.10.2021)
- 3. Разработка рекомендаций по использованию шахтного метана в условиях угольных шахт // А.С. Лесных, А.М. Никитина, С.В. Риб / Наука и молодежь: проблемы, поиски, решения: труды всероссийской научной конференции студентов, аспирантов и молодых ученых. Сибирский государственный индустриальный университет; под общественной редакцией М.В. Темлянцева. 2021. С. 105-109.

НОВЫЕ ТЕХНОЛОГИИ УПРАВЛЕНИЯ КЛИМАТОМ В ПОМЕЩЕНИИ <i>Данилова А.А.</i>	259
СОВРЕМЕННЫЕ ОТОПИТЕЛЬНЫЕ ПРИБОРЫ Евстафьева М.А.	261
ЭКОЛОГИЧНОЕ ОТОПЛЕНИЕ Новикова К.Ю.	
СОВРЕМЕННЫЕ СИСТЕМЫ ОТОПЛЕНИЯ В ИНТЕРЬЕРЕ Понамарева М.А.	
ВЕНТИЛЯЦИЯ НА МКС Пыжлакова Е.С.	
МАЛОШУМНЫЕ ВЕНТИЛЯЦИИ И ТЕХНОЛОГИИ СНИЖЕНИЯ ШУМА <i>Разницына Е.В.</i>	
ОСОБЕННОСТИ АРХИТЕКТУРНОГО РЕШЕНИЯ ДОСУГОВЫХ ЦЕНТРОВ Беликова A.A.	
СТРОИТЕЛЬСТВО ТУРИСТИЧЕСКОГО КОМПЛЕКСА КАК НАЧАЛО СОЗДАНИЯ ГОРНО-РЕКРЕАЦИОННОГО РАЙОНА В Г. МЕЖДУРЕЧЕНСК <i>Корчуганова Ю.А</i>	279
ПРОВЕДЕНИЕ ОБСЛЕДОВАНИЯ ПРОМЫШЛЕННОГО ЗДАНИЯ И РАЗРАБОТКА ВАРИАНТОВ УСИЛЕНИЯ ВЫЯВЛЕННЫХ ПОВРЕЖДЕННЫХ ЖЕЛЕЗОБЕТОННЫХ И КАМЕННЫХ КОНСТРУКЦИЙ Борец А.Ю., Поправка И.А.	283
III ПЕРСПЕКТИВНЫЕ ТЕХНОЛОГИИ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ	291
РАЗРАБОТКА ТЕХНИЧЕСКИХ И ТЕХНОЛОГИЧЕСКИХ РЕШЕНИЙ ПО ВОССТАНОВЛЕНИЮ РАНЕЕ ЗАКОНСЕРВИРОВАННЫХ ГОРНЫХ ВЫРАБОТОК В ЗОНАХ ГЕОЛОГИЧЕСКИХ НАРУШЕНИЙ Агеев Дан.А., Ворсина А.М	291
ВЛИЯНИЕ ВЫБРОСОВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ НА КАЧЕСТВО ВОДЫ РЕКИ ТОМЬ Г. НОВОКУЗНЕЦКА <i>Агеев Д.А., Ворсина А.М.</i>	
АНАЛИЗ КАЧЕСТВА АТМОСФЕРНОГО ВОЗДУХА В ГОРОДЕ НОВОКУЗНЕЦКЕ Агеев Д.А., Ворсина А.М., Агеев Дан.А	
Агеев Д.А., Ворсини А.М., Агеев Дин.А РАЗРАБОТКА МЕРОПРИЯТИЙ ПО ИСПОЛЬЗОВАНИЮ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ В УСЛОВИЯХ УГОЛЬНЫХ ШАХТ КУЗБАССА Альвинский Я.А., Борзых Д.М	
ШАХТНАЯ СИСТЕМА ПОЖАРОТУШЕНИЯ НА ОСНОВЕ	
шалтная система пожагот ушения на основе УГЛЕКИСЛОГО ГАЗА <i>Альвинский Я.А. Григорьев А.А. Мананников С.Д</i>	310

ИННОВАЦИОННЫЕ ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ ПРОВЕДЕНИЯ ПОДГОТОВИТЕЛЬНЫХ ВЫРАБОТОК Безносов А.В	16
ПРОХОДКА ВЫРАБОТОК МАЛОГО СЕЧЕНИЯ С ОГРАНИЧЕНИЕМ ДОСТУПА ЧЕЛОВЕКА Дубима Е.М., Садов Д.В	20
ОЦЕНКА РИСКОВ В ШАХТЕ <i>Садов Д.В., Дубина Е.М.</i>	24
ВНЕДРЕНИЕ НОВЫХ ВЕНТИЛЯЦИОННЫХ УСТАНОВОК ДЛЯ ПРОВЕТРИВАНИЯ ПОДЗЕМНОГО РУДНИКА <i>Елкина Д.И., Лесных А.С.</i> 32	28
АНАЛИЗ ЭФФЕКТИВНОСТИ КОНВЕЙЕРНОГО ТРАНСПОРТА В УСЛОВИЯХ СОВРЕМЕННОГО ГОРНОДОБЫВАЮЩЕГО ПРОИЗВОДСТВА Елкина Д.И	33
КИТАЙ МОЖЕТ НЕ ПРЕКРАЩАТЬ ДОБЫЧУ УГЛЯ Елкина Д.И. 33	
ПРИМЕНЕНИЕ ШАХТНОГО МЕТАНА В ПРОМЫШЛЕННОСТИ Панфилов В.Д., Лесных А.С	12
ЦИФРОВАЯ ТРАНСФОРМАЦИЯ ГОРНОДОБЫВАЮЩЕЙ ОТРАСЛИ: ПРОБЛЕМЫ ПЕРЕХОДА И МЕТОДЫ ВНЕДРЕНИЯ ТЕХНОЛОГИЙ <i>Панфилов В.Д., Борзых Д.М.</i> 34	4 5
АНАЛИЗ ИНФОРМАЦИИ И СПОСОБОВ СНИЖЕНИЯ КОНЦЕНТРАЦИИ УГЛЕКИСЛОГО ГАЗА В АТМОСФЕРЕ <i>Турмий Я.А., Рязанова Е.М.</i>	51
АНАЛИЗ И ПРОГНОЗИРОВАНИЕ СОБЫТИЙ ПРИРОДНОГО И ТЕХНОГЕННОГО ХАРАКТЕРА НА ШАХТАХ КУЗБАССА Кротков И.А, Шмидт Н. А	5 <i>4</i>
МЕТОДИКА БЕЗОПАСНОГО ВЕДЕНИЯ ГОРНЫХ РАБОТ В ГЕОДИНАМИЧЕСКИ АКТИВНЫХ ЗОНАХ Кротков И.А, Шмидт Н.А	58
ОСОБЕННОСТИ АТТЕСТАЦИИ ПО ТЕМЕ «ТЕХНОЛОГИЯ ОТРАБОТКИ МОЩНЫХ ПЛАСТОВ» СПЕЦИАЛЬНОСТИ 21.05.04 «ГОРНОЕ ДЕЛО» С ИСПОЛЬЗОВАНИЕМ ОБУЧАЮЩЕ-ТЕСТИРУЮЩЕЙ ПРОГРАММЫ Лесных А.С	62
ИСПОЛЬЗОВАНИЕ ПРОГРАММНОГО КОМПЛЕКСА «ВЕНТИЛЯЦИЯ» ДЛЯ АНАЛИЗА И ОПТИМИЗАЦИИ СХЕМ ПРОВЕТРИВАНИЯ ВЫЕМОЧНЫХ УЧАСТКОВ Лесных А.С	
ПРОГНОЗ ДИНАМИЧЕСКИХ ЯВЛЕНИЙ ПРИ ОТРАБОТКЕ УГОЛЬНЫХ ПЛАСТОВ <i>Мячиков К.В., Юрченко С.П., Лесных А.С.</i>	

ПУТИ ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ ПОДЗЕМНЫХ ДЕГАЗАЦИОННЫХ СКВАЖИН НА ЭТАПАХ ПРЕДВАРИТЕЛЬНОЙ И ЗАБЛАГОВРЕМЕННОЙ ДЕГАЗАЦИИ	
Алькова Ш.Ю	372
АНАЛИЗ ВОЗДЕЙСТВИЯ МАССОВЫХ ВЗРЫВОВ НА ПАРАМЕТРЫ УСТОЙЧИВОСТИ ГОРНЫХ ВЫРАБОТОК В УСЛОВИЯХ АО «РАЗРЕЗ «СТЕПАНОВСКИЙ» Климкин М.А., Агеев Дан.А., Курдюков М.О	
РАЗРАБОТКА МЕРОПРИЯТИЙ ПО СНИЖЕНИЮ СЕЙСМИЧЕСКОГО ВОЗДЕЙСТВИЯ МАССОВЫХ ВЗРЫВОВ АО «РАЗРЕЗ «СТЕПАНОВСКИЙ» НА БЛИЖАЙШИЕ НАСЕЛЕННЫЕ ПУНКТЫ Агеев Д.А.	380
ПРИМЕНЕНИЕ НЕЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ ИНИЦИИРОВАНИЯ ПРИ ВЗРЫВНЫХ РАБОТАХ В УСЛОВИЯХ АО «РАЗРЕЗ «СТЕПАНОВСКИЙ» Апенкин В.Е.	
ИСПОЛЬЗОВАНИЕ ПТК «BLAST MAKER» ДЛЯ ОПТИМИЗАЦИИ РАСХОДА ВВ В УСЛОВИЯХ РАЗРЕЗА «БЕРЁЗОВСКИЙ» Сентюрев С.А.	
IV МЕТАЛЛУРГИЧЕСКИЕ ПРОЦЕССЫ, ТЕХНОЛОГИИ, МАТЕРИАЛЫ И ОБОРУДОВАНИЕ	
ПОВЫШЕНИЕ ТЕПЛОВОЙ ЭФФЕКТИВНОСТИ СТЕНДОВ СУШКИ И РАЗОГРЕВА СТАЛЕРАЗЛИВОЧНЫХ КОВШЕЙ Красильников В.В., Никитин Д.А., Запольская Е.М	388
ИССЛЕДОВАНИЕ МИНЕРАЛОГИЧЕСКОГО СОСТАВА ОБЕЗУГЛЕРОЖЕННЫХ СЛОЕВ УГЛЕРОДСОДЕРЖАЩИХ КОВШЕВЫХ ОГНЕУПОРОВ	
Кувшинникова Н.И., Запольская Е.М.	396
АНАЛИЗ МОДИФИКАЦИИ СВОЙСТВ ПОВЕРХНОСТИ СПЛАВА AI-Mg, ПРИ ЭЛЕКТРОННО-ПУЧКОВОЙ ОБРАБОТКЕ	400
Панченко И.С., Гэн Я., Розенштейн Е.О ПЛАЗМОМЕТАЛЛУРГИЧЕСКОЕ ПОЛУЧЕНИЕ НАНОДИСПЕРСНЫХ	400
ПОРОШКОВ ВОЛЬФРАМА И ЕГО СОЕДИНЕНИЙ Шагиев Р.Р., Шагиев Э.Р., Баротов Ф.Б	402
ТЕХНИЧЕСКИЕ РЕШЕНИЯ ПО РЕКОНСТРУКЦИИ ИЗВЕСТКОВОГО ПРОИЗВОДСТВА АО «ЕВРАЗ ЗСМК»	
Коряковцева О.В.	406
ТЕХНОЛОГИЯ ВВОДА НАНОМАТЕРИАЛОВ В РАСПЛАВ НА ОСНОВЕ ИСПОЛЬЗОВАНИЯ ПОРИСТЫХ ЛИТЫХ МАТЕРИАЛОВ Чирков А.В., Скрылев М.А.	411
ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ЛИТЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ Скрылев М.А., Чирков А.В.	
РАЗРАБОТКА ПРОЕКТА ТОРМОЗНОГО СТЕНДА ДЛЯУЧЕБНОЙ ЛАБОРАТОРИИ «ШАССИ И ТРАНСМИССИЯ АВТОМОБИЛЕЙ» Андреев К.А.	421
a	_

ПРОБЛЕМЫ ВЗАИМОДЕЙСТВИЯ СТАНЦИИ НЕОБЩЕГО	
ПОЛЬЗОВАНИЯ СО СТАНЦИЕЙ ЖЕЛЕЗНОЙ ДОРОГИ	
Смирнов Д.Д	426
ВЗАИМОДЕЙСТВИЕ МЕЖДУ ПРОМЫШЛЕННЫМИ ПРЕДПРИЯТИЯМИ И ЖЕЛЕЗНОДОРОЖНЫМИ ПУТЯМИ НЕОБЩЕГО ПОЛЬЗОВАНИЯ	
Смирнов Д.Д	430
ГОРОДСКАЯ СРЕДА КАК ИСТОЧНИК ЭКОЛОГИЧЕСКИХ ПРОБЛЕМ <i>Минаева У.Е.</i>	433
ОТНОШЕНИЕ МИРОВОГО ЭКОЛОГИЧЕСКОГО СООБЩЕСТВА К ПАРИЖСКОМУ СОГЛАШЕНИЮ	12 -
Кириляк М.В	436
КИНЕМАТИЧЕСКИЙ АНАЛИЗ КРИВОШИПНО-ПОЛЗУННОГО МЕХАНИЗМА ПРЕССА	
Худжаев У.О.	440

Научное издание

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ТЕХНИЧЕСКИЕ НАУКИ

Выпуск 25

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых

Часть V

Под общей редакцией Н.А. Козырева Технический редактор Г.А. Морина Компьютерная верстка Н.В. Ознобихина

Подписано в печать 20.09.2021 г. Формат бумаги 60х84 1/16. Бумага писчая. Печать офсетная. Усл. печ. л. 26,4. Уч.-изд. л. 28,8. Тираж 300 экз. Заказ № 199

Сибирский государственный индустриальный университет 654007, г. Новокузнецк, ул. Кирова, 42 Издательский центр СибГИУ