Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет»

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ЕСТЕСТВЕННЫЕ И ТЕХНИЧЕСКИЕ НАУКИ

ЧАСТЬ І

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых 19 – 21 мая 2020 г.

выпуск 24

Под общей редакцией профессора М. В. Темлянцева

Новокузнецк 2020

Редакционная коллегия:

д-р техн. наук, профессор Темлянцев М.В., д-р физ.-мат. наук, профессор Громов В.Е., д-р геол.- минерал. наук, профессор Гутак Я.М., д-р техн. наук, профессор Фрянов В.Н., канд. техн. наук, доцент Чаплыгин В.В., д-р техн. наук, профессор Галевский Г.В., д-р техн. наук, доцент Фастыковский А.Р., д-р техн. наук, профессор Козырев Н.А., канд. техн. наук, доцент Коротков С.Г.

H 340

Наука и молодежь: проблемы, поиски, решения: труды Всероссийской научной конференции студентов, аспирантов и молодых ученых / Министерство науки и высшего образования РФ, Сиб. гос. индустр. ун-т; под общ. ред. М.В. Темлянцева. — Новокузнецк: Издтельский центр СибГИУ, 2020. — Вып. 24. — Ч. І. Естественные и технические науки. — 480 с., ил. — 164, таб. — 88.

Представлены труды Всероссийской научной конференции студентов, аспирантов и молодых ученых по результатам научно-исследовательских работ. Первая часть сборника посвящена актуальным вопросам в области естетсвенных наук, перспективных технологий разработки месторождений полезных ископаемых, металлургических процессов, технологий, материалов и оборудования, экологии, безопасности, рационального использования ресурсов.

Материалы сборника представляют интерес для научных и научнотехнических работников, преподавателей, аспирантов и студентов вузов.

ISSN 2500-3364

© Сибирский государственный индустриальный университет, 2020

стимой и может повлиять на сроки эксплуатации рельсов. Присутствие мартенсита в сварном шве так же обнаружено в образце №2.

3. Установлено, что оптимальными параметрами контактного подогрева для образцов стали Э76ХФ после контактной стыковой сварки, являются параметры, использованные при обработке образов №1.

Библиографический список

- 1. Генкин И.З. Сварные рельсы и стрелочные переводы.// М. Интекст.2003- 93 с.
- 2. Бутакова К.А., Гостевская А.Н., Шевченко Р.А., Козырев Н.А., Усольцев А.А. Исследование структуры сварного соединения рельсовой стали марки Э76X при различных параметрах изотермической выдержки. Вестник горно-металлургической секции Российской академии наук. Отделение металлургии. 2018. №41. С. 221-224.

УДК 625.143.48

ВЛИЯНИЕ РЕЖИМОВ КОНТАКТНОЙ СТЫКОВОЙ СВАРКИ НА НЕМЕТАЛЛИЧЕСКИЕ ВКЛЮЧЕНИЯ В МЕТАЛЛЕ РЕЛЬСОВОЙ СТАЛИ Э76ХФ

Гостевская А.Н., Бутакова К.А., Азаренков И.А., Алимарданов П.Э. Научный руководитель: Шевченко Р.А.

Сибирский государственный индустриальный университет, г. Новокузнецк, e-mail: lokon1296@mail.ru

В работе исследуется влияние параметров изотермической выдержки на неметаллические включения сварных соединений рельсов из стали марки Э76ХФ. При исследовании загрязненности неметаллическими включениями было проведено анализ основного металла и сварного шва, произведена оценка неметаллических включений и выбран оптимальный режим сварки.

Ключевые слова: контактная стыковая сварка, сварной шов, рельсовая сталь, неметаллические включения.

Одной из основных причин вывода рельсов из эксплуатации являются скопления неметаллических включений в зоне сварного стыка [1].

При этом неметаллические включения могут образовываться, как при производстве стали (выплавка, внепечная обработка, разливка стали), так и непосредственно при сварке рельсов в плети. Потому вопросом образования неметаллических включений и их трансформация при сталеплавильном производстве и сварке рельсов уделяется большое внимание [2].

Целью настоящей работы является исследование влияния контактного подогрева на образование неметаллических включений стали марки Э76XФ.

Для проведения металлографического анализа микроструктуры сварного шва стали $76X\Phi$ из головки рельса вырезались образцы $90 \text{ мм} \times 30 \text{ мм} \times 10 \text{ мм}$ с известным химическим составом (таблица 1).

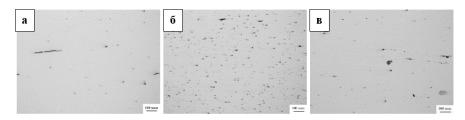
Таблица 1 – Химический состав образцов рельсовой стали

№ образца	Массовая доля элементов, %								
	C	Mn	Cr	Si	V	Al	P	S	
0	0,74	0,84	0,37	0,26	0,04	0,002	0,009	0,010	
1	0,76	0,77	0,37	0,53	0,04	0,003	0,010	0,009	
2	0,76	0,77	0,36	0,53	0,04	0,003	0,010	0,007	

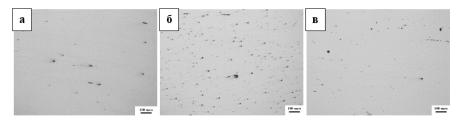
Для сварки образец вырезался из рельсов сечением 10 мм \times 30 мм и длиной 90 мм. Контактную стыковую сварку непрерывным оплавлением проводили на машине MC - 20.08 по режиму: $U_2 = 5,76$ B, $I_2 = 11,7$ кA, $V_{\text{опл}} = 1$ мм/с, $\Delta_{\text{опл}} = 10$ мм, где U_2 — вторичное напряжение; I_2 — вторичный ток; $\Delta_{\text{опл}}$ — припуск на оплавление; $\Delta_{\text{ос}}$ — припуск на осадку; $V_{\text{опл}}$ — скорость оплавления.

Образец №1 получен способом контактной стыковой сварки непрерывным оплавлением без термической обработки. При сварке образцов №2 — №3 происходил подвод дополнительного тепла в момент их охлаждения путем пропускания через сварной стык переменного электрического тока по заданным режимам (Таблица 2).

Таблица 2 – Режимы контактного подогрева образцов стали Э76ХФ


Образец, №	время охла- ждения после осадки, с	время по- догрева, с	время охлажде- ния после подо- грева, с	количество импульсов подогрева, с
1	30	0,6	15	4
2	30	0,6	15	2

Исследование образцов стали Э76XФ на неметаллические включения проводилось на металлографическом микроскопе OLYMPUS GX-51 при увеличении в 100 крат в соответствии ГОСТ 1778-70.


Изучение уровня загрязненности неметаллическими включениями проводили на образцах до сварки, как и после сварки в зоне сварного стыка. В сварном шве образца №0 так же, как и в основном металле рельсовой стали марки $976X\Phi$ было обнаружено небольшое количество точечных оксидов (балл №1а) (рисунок 1 а), пластинчатые силикаты (балл № 3а) (рисунок 1 а, 2 а) и нитриды строчечные (балл № 2а) (рисунок 1 а).

В образцах №1 (рисунок 1 б) и №2 (рисунок 1 в) в основном металле и в сварном шве наблюдалось присутствие точечных оксидов (балл № 1а), недеформирующихся силикатов (балл № 5а) и пластинчатых силикатов (балл № 4а). В сварном шве образца №0 так же, как и в основном металле рельсовой стали марки $976X\Phi$ было обнаружено небольшое количество точечных оксидов (балл №1а) (рисунок 1 а, 2 а), пластинчатые силикаты (балл № 3а)

(рисунок 1 а, 2 а) и нитриды строчечные (балл № 2а) (рисунок 1 а, 2 а).

а – образец №0; б – образец №1; в – образец №2; г – образец №3; Рисунок 1 – Неметаллические включения основного металла

а – образец №0; б – образец №1; в – образец №2; г – образец №3;

Рисунок 2 – Неметаллические включения сварного шва стали марки Э76ХФ

В образцах №1 (рисунок 1 б, 2 б) и №2 (рисунок 1 в, 2 в) в основном металле и в сварном шве наблюдалось присутствие точечных оксидов (балл № 1а), недеформирующихся силикатов (балл № 5а) и пластинчатых силикатов (балл № 4а).

По результатам исследования можно сделать вывод, что в зоне сварного шва и основного металла присутствуют неметаллических включений в виде оксидов точечных, силикатов пластичных и недеформирующихся (рисунок 1, 2). Проведенные исследования загрязненности образцов показало, что в зоне основного металла выявлены неметаллические включения схожие с присутствующими в зоне сварного шва. Было установлено, что самым загрязненным образцов является образец №1, а самыми чистыми образцы №0.

Исходя из полученных результатов установлено, что контактная стыковая сварка непрерывным не оказала влияние на образование неметаллических включений в образцах.

Выводы: На основании полученных данных о загрязненности неметаллическими включениями в соответствие с ГОСТ 1778-70 было установлено, что преобладающим типом неметаллических включений в сварных соединениях во всех исследуемых образцах являются точечные оксиды. Неметаллические включения, выявленные в металле, типичны для включений, образующихся при выплавке.

2. В ходе исследования было установлено, что самым загрязненным по количества и видам неметаллических включений является образец №6 как в основном металле, так и в зоне сварного шва. Было выявлено, что самым чистым образцом в зоне сварного шва и основного металла по количества и

видам неметаллических включений является образец №8.

3. Исследование неметаллических включений образцов в основном металле и в зоне сварного шва показало, что режимы контактной стыковой сварки непрерывным оплавлением не оказали влияние на загрязненность образцов.

Библиографический список

- 1. Уманский, А. А. Исследования состава и распределения неметаллических включений по сечению рельсовых профилей / А. А. Уманский, А. В. Головатенко, А. С. Симачев // Вестник горно-металлургической секции Российской академии естественных наук. Отделение металлургии: сборник научных трудов. Москва; Новокузнецк: Изд. центр СибГИУ, 2019. Вып. 42. С. 22 27.
- 2. Исследование структуры сварного соединения рельсовой стали марки 76ХФ при различных параметрах изотермической выдержки / К. А. Бутакова, А. Н. Гостевская, Р. А. Шевченко, Н. А. Козырев, А. А. Усольцев // Вестник горно-металлургической секции Российской академии естественных наук. Отделение металлургии: сборник научных трудов. Москва; Новокузнецк: СибГИУ, 2018. Вып. 41. С. 221 224.

УДК 621.791:624

РАЗРАБОТКА САМОФЛЮСУЮЩЕЙСЯ ПОРОШКОВОЙ ПРОВОЛОКИ ДЛЯ НАПЛАВКИ НА ОСНОВЕ ОТХОДОВ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА

Гусева Д.А., Шамрай В.Р., Комаров А.А. Научный руководитель: канд. техн. наук, доцент Усольцев А.А.

Сибирский государственный индустриальный университет, г. Новокузнецк, e-mail: a.us@rambler.ru

В данной работе представлены результаты проведенных исследований по использованию самофлюсующейся порошковой проволоки для наплавки на основе шлака производства силикомарганца и железного порошка. В лабораторных условиях изготавливалась порошковая проволока с дальнейшей наплавкой на пластины из марки стали 09Г2С.

Ключевые слова: порошковая проволока, технология, наплавка, шлак силикомарганца, железный порошок.

В лабораторных условиях производилась наплавка исследуемых самофлюсующихся порошковых проволок на основе железного порошка и шлака силикомарганца, с химическим составом мас. %: S 0.15-0.17 %, P 0.01 %, F 0.28-0.76%, FeO 0.27-0.81 %, CaO 22.85-31.70 %, SiO₂ 46.46-48.16 %, MnO

СРАВНИТЕЛЬНЫЙ АНАЛИЗ СПОСОБОВ УЛАВЛИВАНИЯ АММИАКА ИЗ КОКСОВОГО ГАЗА Литвинов А.П	224
ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ И ПЕРСПЕКТИВЫ УСТК НА АО «ЕВРАЗ ЗСМК» Новиков М.В.	
НЕТРАДИЦИОННОЕ РЕШЕНИЕ ПОЛУЧЕНИЯ ШТРИПСОВОЙ ЛЕНТЫ ПОД ПОРОШКОВУЮ ПРОВОЛОКУ Густова Д.О., Иванкина И.В.	
ИСПОЛЬЗОВАНИЕ ТЕХНОЛОГИЙ НЕПРЕРЫВНОГО ПРЕССОВАНИЯ И ВОЛОЧЕНИЯ ДЛЯ ВЗАИМОВЫГОДНОГО ПАРТНЕРСТВА ОАО "НКАЗ" И АО "ЕВРАЗ ЗСМК" Иванкина И. В., Густова Д. О., Вахроломеев В.А	
СНИЖЕНИЕ ЭНЕРГОЗАТРАТ ПРИ ПРОИЗВОДСТВЕ ШАРОВ В УСЛОВИЯХ АО «ЕВРАЗ ЗСМК» Курбангалеев Д.К.	
УВЕЛИЧЕНИЕ ПРОИЗВОДСТВА ШАРОВ В УСЛОВИЯХ АО «ЕВРАЗ ЗСМК» Курбангалеев Д.К	
ПУТИ ПОВЫШЕНИЯ КАЧЕСТВА ТРАМВАЙНЫХ РЕЛЬСОВ Чудов А.Е., Хузин А.М.	
УЛУЧШЕНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ СПЛАВА АК9пч МОДИФИЦИРОВАНИЕМ Зеневич А.В., Соколов Б.М., Ознобихина Н.В., Михно А.Р., Сычев А.А.	249
АНАЛИЗ ТЕХНОЛОГИЧЕСКИХ ФАКТОРОВ ОПРЕДЕЛЯЮЩИХ КАЧЕСТВО (СТОЙКСТЬ) СЕКЦИИ ПРЯМОЙ ГАЗОСБОРНОГО КОЛОКОЛА ЭЛЕКТРОЛИЗЕРА Соколов Б.М., Ознобихина Н.В., Михно А.Р., Белов Д.Е., Зеневич А.В.	
СОВРЕМЕННЫЕ МЕТОДЫ И СИСТЕМЫ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ СВАРНЫХ ИЗДЕЛИЙ Прохоренко Д.А., Масалова Д.А., Гулидов А.А., Соколов Б.М., Ознобихина Н.В.	
ИЗМЕНЕНИЕ ИЗНОСОСТОЙКОСТИ И МИКРОТВЕРДОСТИ ДОЭВТЕКТИЧЕСКОГО СИЛУМИНА, ОБЛУЧЕННОГО ИМПУЛЬСНЫМ ЭЛЕКТРОННЫМ ПУЧКОМ Абатурова А.А., Шляров В.В., Петрикова Е.А., Тересов А.Д	
ИССЛЕДОВАНИЯ МИКРОСТРУКТУРЫ ОБРАЗЦОВ РЕЛЬСОВОЙ СТАЛИ ПОСЛЕ СВАРКИ НА МАШИНЕ МС 20.08 Азаренков И.А., Алимарданов П.Э.	
ИССЛЕДОВАНИЕ МЕТАЛЛА, НАПЛАВЛЕННОГО ПОД ФЛЮСОМ, ИЗГОТОВЛЕННЫМ НА ОСНОВЕ ОТХОДОВ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА Апанина В.О., Михно А.Р., Постников А.В	270

МЕТАЛЛОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ СТРУКТУРЫ СВАРНЫХ ШВОВ ЖЕЛЕЗНОДОРОЖНЫХ РЕЛЬСОВ, ПОЛУЧЕННЫХ КОНТАКТНОЙ СТЫКОВОЙ СВАРКОЙ С ПОСЛЕДУЮЩИМ КОНТАКТНЫМ ПОДГРЕВОМ	
Бутакова К.А., Гостевская А.Н., Алимарданов П.Э., Азаренков И.А	274
ВЛИЯНИЕ РЕЖИМОВ КОНТАКТНОЙ СТЫКОВОЙ СВАРКИ НА НЕМЕТАЛЛИЧЕСКИЕ ВКЛЮЧЕНИЯ В МЕТАЛЛЕ РЕЛЬСОВОЙ СТАЛИ Э76ХФ Гостевская А.Н., Бутакова К.А., Азаренков И.А., Алимарданов П.Э	279
РАЗРАБОТКА САМОФЛЮСУЮЩЕЙСЯ ПОРОШКОВОЙ ПРОВОЛОКИ ДЛЯ НАПЛАВКИ НА ОСНОВЕ ОТХОДОВ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА	
Гусева Д.А., Шамрай В.Р., Комаров А.А.	282
СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА НАПЛАВКИ ПОРОШКОВОЙ ПРОВОЛОКОЙ ПП-НП-35В9Х3СФ ДЕТАЛЕЙ МЕТАЛЛУРГИЧЕСКОГО ОБОРУДОВАНИЯ	205
Денисов П.А. Белов Д.Е	285
СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА НАПЛАВКИ ПОРОШКОВОЙ ПРОВОЛОКОЙ МАРКИ ПП-НП-25Х5ФМС Кашин С.С., В. Белов Д.Е.	288
ВЛИЯНИЕ ХРОМА И УГЛЕРОДА В ПОРОШКОВОЙ ПРОВОЛОКЕ СИСТЕМЫ FE-C-SI-MN-CR-NI-MO-V НА ИЗНОСОСТОЙКОСТЬ И ТВЕРДОСТЬ НАПЛАВЛЯЕМОГО МЕТАЛЛА Комаров А.А. Осетковский И.В. Сычев А.А.	291
СВОЙСТВА НАПЛАВОЧНЫХ ФЛЮСОВ, НА ОСНОВЕ ШЛАКА СИЛИКОМАРГАНЦА	
Михно А.Р., Кречетов Е.К., Евсюков И.А., Киселев П.В., Тюрин А.А	295
ИССЛЕДОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ СВАРНЫХ ШВОВ ИЗГОТОВЛЕННЫХ С ИСПОЛЬЗОВАНИЕМ МАРГАНЕЦСОДЕРЖАЩИХ ФЛЮСОВ	400
Михно А.Р. Киселев П.В., Тюрин А.А.	298
МЕТАЛЛОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ СТРУКТУРЫ СВАРНЫХ ШВОВ ИЗГОТОВЛЕННЫХ С ПРИМЕНЕНИЕМ СВАРОЧНЫХ ФЛЮСОВ НА ОСНОВЕ ШЛАКОВ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА	
Постников А.В., Михно А.Р., Апанина В.О	303
ИССЛЕДОВАНИЕ ПРОЦЕССА ПОЛУЧЕНИЯ СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ ИЗ ЗОЛОШЛАКОВЫХ ОТХОДОВ ТЭЦ	20-
Шавлов И.С	307
ИССЛЕДОВАНИЕ ПРОЦЕССА ОКРАСКИ СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ С ПОМОЩЬЮ СЫПУЧИХ ОТХОДОВ ПРОМЫШЛЕННОСТИ Домнин К.И	312
	J14
МЕТОДИКА ОЦЕНКИ УСЛОВИЙ НАДЕЖНОСТИ ПРОЦЕССА СЛОЕВОЙ ТЕПЛОГЕНЕРАЦИИ ТОПЛИВНЫХ БРИКЕТОВ, СОДЕРЖАЩИХ ПОВЕРХНОСТНЫЕ ДЕФЕКТЫ	
Акенфиев А А	317

Научное издание

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ЕСТЕСТВЕННЫЕ И ТЕХНИЧЕСКИЕ НАУКИ Часть I

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых

Выпуск 24

Под общей редакцией М.В. Темлянцева Технический редактор Г.А. Морина Компьютерная верстка Н.В. Ознобихина В.Е Хомичева

Подписано в печать 11.06.2020 г. Формат бумаги 60х84 1/16. Бумага писчая. Печать офсетная. Усл. печ. л. 28,2 Уч.-изд. л. 30,6 Тираж 300 экз. Заказ № 99

Сибирский государственный индустриальный университет 654007, г. Новокузнецк, ул. Кирова, 42 Издательский центр СибГИУ