Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет»

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ЕСТЕСТВЕННЫЕ И ТЕХНИЧЕСКИЕ НАУКИ

ЧАСТЬ ІІ

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых 16 – 18 мая 2017 г.

выпуск 21

Под общей редакцией профессора М.В. Темлянцева

Новокузнецк 2017

Редакционная коллегия:

д-р техн. наук, профессор М.В. Темлянцев, д-р хим. наук, профессор В.Ф. Горюшкин, д-р физ.- мат. наук, профессор В.Е. Громов, д-р геол. - минерал. наук, профессор Я.М. Гутак, д-р техн. наук, профессор В.Н. Фрянов, канд. техн. наук, доцент В.В. Чаплыгин, д-р техн. наук, профессор Г.В. Галевский, канд. техн. наук, доцент С.В. Фейлер, д-р техн. наук, доцент А.Р. Фастыковский, д-р техн. наук, профессор Н.А. Козырев, канд. техн. наук, доцент С.Г. Коротков

H 340

Наука и молодежь: проблемы, поиски, решения: труды Всероссийской научной конференции студентов, аспирантов и молодых ученых / Сиб. гос. индустр. ун-т; под общ. ред. М.В. Темлянцева. — Новокузнецк: Изд. центр СибГИУ, 2017. - Вып. 21. - Ч. II. Естественные и технические науки. —440 с., ил.- 113, таб.- 77.

Представлены труды Всероссийской научной конференции студентов, аспирантов и молодых ученых по результатам научно-исследовательских работ. Вторая часть сборника посвящена актуальным вопросам в области естественных и технических наук: химии, физики, перспективных технологий разработки месторождений полезных ископаемых, металлургических процессов, технологий, материалов и оборудования, экологии, безопасности, рационального использования природных ресурсов.

Материалы сборника представляют интерес для научных и научнотехнических работников, преподавателей, аспирантов и студентов вузов.

АНАЛИЗ КОНСТРУКТИВНЫХ ОСОБЕННОСТЕЙ ДУТЬЕВЫХ УСТРОЙСТВ ДЛЯ ПРОДУВКИ МЕТАЛЛИЧЕСКОГО РАСПЛАВА В КОНВЕРТЕРЕ

Сафонов С.О.

Научный руководитель: канд. техн. наук Фейлер С.В.

Сибирский государственный индустриальный университет, г. Новокузнецк, e-mail:sergey.safonov.1950@mail.ru

Приведен анализ различных конструкций дутьевых устройств для продувки металлического расплава в конвертере в зависимости от параметров технологического процесса.

Ключевые слова: фурма, конструкция, расплав, охлаждение, кислород, сопло.

В современном кислородно-конвертерном производстве особое внимание уделяется не только совершенствованию конструкции агрегата для выплавки стали, но и устройствам для подачи газообразного окислителя в жидкий расплав, так называемым кислородным фурмам. От конструкции кислородной фурмы зависит её срок службы, давление и объем подаваемого кислорода в единицу времени в конвертер на окисление примесей чугуна. В настоящее время в конвертерном производстве применяют кислородные фурмы с водяным охлаждением для продления срока службы.

Если углубиться в историю конвертерного процесса, то в 1856 году Генри Бессемер получил патент на способ получения стали при продувке металлического расплава атмосферным воздухом через днище конвертера. Содержащийся в воздухе азот уносил заметную часть полезного тепла реакции, не позволяя вносить в плавку большие количества металлического лома, и частично переходил примесью в получаемую сталь. Основным недостатком процесса являлось невысокое качество металла из-за неудалённых при продувке вредных примесей.

Позже, в 1968 году, конвертерный процесс повлёк за собой значительные изменения и продувка металлического расплава стала осуществляться технически чистым кислородом через верхнюю водоохлаждаемую фурму, что положительно сказывается и по сей день на качестве стали, получаемой в кислородных конвертерах.

На рисунке 1 приведена конструкция односопловой кислородной водоохлаждаемой фурмы с центральной подачей кислорода.

Рассматриваемый способ подачи кислорода и воды наиболее предпочтителен из-за того, что обеспечивается достаточное охлаждение фурмы, в связи с тем, что вода контактирует через разделительную стенку трубы с наружной стальной трубой и медной головкой фурмы и, в дополнение к этому, при цен-

тральной подаче кислорода, меньшая величина суммарных местных сопротивлений, что приводит к меньшим потерям давления кислорода в фурме.

На рисунке 1 приведена конструкция односопловой фурмы, которые в настоящее время нецелесообразно применять в связи с тем, что при использовании устройств с такими параметрами, было установлено много выбросов жидкого шлака и металлического расплава из конвертера. В настоящее время применяются фурмы с числом сопел от 4 и более, вследствие этого обеспечивается уменьшение расхода кислорода на одно сопло.

Количество и диаметр сопел влияет на интенсивность перемешивания металлической ванны и окисления примесей чугуна. При меньшем количестве сопел в головке фурмы необходимо увеличивать диаметр сопел и наоборот. В многосопловых фурмах, все сопла расположены под углом относительно центральной оси потока газа [1].

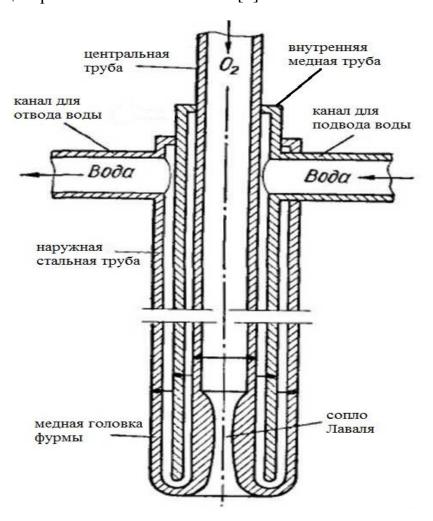
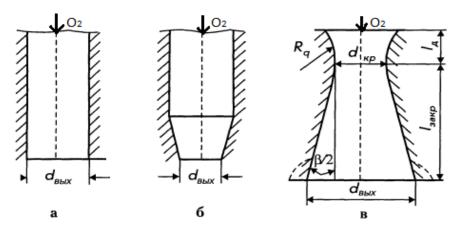



Рисунок 1 — Односопловая кислородная водоохлаждаемая фурма с центральной подачей кислорода

На рисунке 2 приведены примеры различных выходных отверстий через которые подают кислород под давлением, в примере (а) и (б) при сверх-критическом давлении скорость кислорода на выходе из сопла — звуковая, а в примере (в) — сверхзвуковая.

а - цилиндрическое сопло, б - модифицированное сопло, в - сопло Лаваля Рисунок 2 — Конструктивные особенности сопел

Конструкция сопла Лаваля на сегодняшний день является самой эффективной и долговечной из-за того, что позволяет достичь подаваемому кислороду под высоким давлением на выходе из сопла сверхзвуковой скорости [2].

Развитие и совершенствование конструкции кислородных фурм продолжается и сегодня, модернизируется конфигурация сопел и система охлаждения фурм, например, в конвертерном цехе ПАО «Азовсталь» была разработана и опробована такая конструктивная особенность как пятисопловая фурма с дополнительным центральным сопловым модулем для дожигания СО.

Такая фурма работает по принципу завихрения кислорода, проходящего через тангенциальный завихритель и, взаимодействуя с СО на выходе из сопла, способствует его дожиганию в пространстве агрегата. Фурмы с такими конструктивными особенностями позволяют улучшить процесс шлакообразования, уменьшить угар металла за счет улучшения теплового баланса плавки, уменьшить удельный расход чугуна в шихте, а также увеличить степень дожигания СО до CO_2 [3].

Таким образом, конструктивные особенности кислородных фурм, такие как количество сопел и их конфигурация влияют на ход технологического процесса и его технико-экономические показатели.

Библиографический список

- 1. Эволюция конвертерных процессов получения стали, перспективы развития / С.П. Пантейков // Труды восьмого конгресса сталеплавильщиков. М.: ОАО "Черметинформация", 2014. С. 64 73.
- 2. Бойченко Б.М. Конструкция дутьевых устройств. В кн.: Конвертерное производство стали. Днепропетровск: Металлургия, 2006. С. 7 19.
- 3. Совершенствование конструкции кислородной фурмы и дутьевого режима конвертерной плавки в ПАО "МК "АЗОВСТАЛЬ" / А.В. Сущенко, А.А. Ситало, А.С. Гриценко и др. // Труды седьмого конгресса сталеплавильщиков М.: ОАО "Черметинформация", 2013. С.61 69.

СОДЕРЖАНИЕ

І. ЕСТЕСТВЕННЫЕ НАУКИ	3
Романов Д.А., Степиков М.А., Гаевой Е.А., Апанина В.О. Анализ структуры электровзрывных покрытий системы TiC-TiAL методом просвечивающей электронной микроскопии	3
Зайцев Н.С., Бендре Ю.В., Зенцова С.В. Активация реакции окисления титана статическим электрическим зарядом, сообщаемым металлу от внешнего источника.	6
Шляров В.В., Осинцев К.А. Исследования потери массы поликристаллического алюминия марки A85 при изменении температуры для образцов, разрушенных в условия ползучести с магнитным воздействием и без него.	15
Истомин И.Б. Спектральный метод исследования межфазных взаимодействий на границе раздела уголь-раствор ПАВ	20
Павлов Н.В. Поведение наноразмерных пленок оксида молибдена (VI) под действием света.	23
Суровая В.Э. Модификация наноразмерных пленок марганца в процессе термической обработки при T=473К.	26
Назарова Е.С. Облучение наноразмерных пленок висмута светом $\lambda = 360$ нм интенсивностью $I = 7,0\cdot 10^{15}$ квант см ⁻² · с ⁻¹	29
Гостевская А.Н., Рубанникова Ю.А., Мусорина Е.В. Структурно-фазовые состояния и свойства поверхности термомеханически упрочненной низкоуглеродистой стали	32
Мусорина Е.В., Гостевская А.Н., Рубанникова Ю.А. Эволюция структурно-фазовых состояний поверхностного слоя рельсовой стали при длительной эксплуатации	34
Рубанникова Ю.А., Мусорина Е.В., Гостевская А.Н. Влияние электронно-пучковой обработки на структурнофазовые состояния поверхностного слоя материала наплавки,	
сформированной на стали электроконтактным методом	36

устюжанин С. В., І рановскии А.Ю.	
Модели формирования капель на электроде при электросварных технологиях	39
Шляпников С.С. Математическое моделирование структурно-фазовых превращений при прерывистом охлаждении проката	42
Поданев А.П., Грановский А.Ю. Модель перемешивания в ванне расплава при электродуговой наплавке	45
Козлова И.В., Сысолятин А.С. Определение основных параметров высококалорийного синтез-газа полученного из органических веществ.	48
Ильященко А.В. Математическая модель распространения термоупругих волн при воздействии газокапельной среды на горячий прокат	51
Михайлов В.А. Оптические свойства наноразмерной системы Ві – МоО ₃ при Т=473К	54
Бахриева Л.Р., Романов Д.А. Анализ особенностей формирования структуры электровзрывного покрытия системы Mo-C-Cu	57
Беляев В.А. Варианты метода коллокации и наименьших невязок для решения задач математической физики в неканонических областях	59
II. ПЕРСПЕКТИВНЫЕ ТЕХНОЛОГИИ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ	61
Сергеев А.А. Использование комплекса глубокой разработки пластов на разрезе «Южный»	61
Ермилов В.В., Матвеев А.В. Анализ современных методов разработки месторождений природного камня	64
Сергеев А.А. Увеличение производительности обогатительной установки с крутонаклонным сепаратором	66

Веденяпина О.Ю. Энергосистема Кузбасса	69
Обрядин А.А. Разработка структуры и выбор средств реализации модели проведения горной выработки	72
Шабунов М.Е. К анализу путей модернизации устаревших вентиляторов главного проветривания шахт.	76
Микунов В.В., Никитина А.М., Риб С.В. Разработка технико - технологических решений по повышению эффективности монтажно-демонтажных работ для шахт Юга Кузбасса на примере ООО «Шахта «Алардинская»	78
Черешнева Е.В. Разработка алгоритма оценивания результатов выполнения компьютерной лабораторной работы по специальности 21.05.04 «Горное дело»	84
Обрядин А.А. Исследование влияния разгрузочных скважин на напряжённо- деформированное состояние массива горных пород	87
Сёмин А.А., Климкин М.А. Регистрация сейсмических колебаний от подземного массового взрыва	91
Сёмин А.А., Климкин М.А. Регистрация сейсмических колебаний от массовых взрывов в пос. Гавриловка	93
Сёмин А.А., Климкин М.А. Методика и аппаратура регистрации сейсмических колебаний	97
Ильина Е.Н. Применение патронированных эмульсионных ВВ	100
Колмаков А.А. Отработка рудных залежей шерегешевского месторождения в опасных условиях	103
Назаров В.П. Способы предотвращение опасных выделений природных газов при подземной разработке рудных месторождений Норильска	108
Торопова Н.В. Высококачественное брикетное топливо	111

Косинова Н.С.	
Повышение эффективности обезвоживания концентрата при помощи фильтра высокого давления 6ПТК-10	114
Бурова А.О., Малофеев Д.В. Учет влияния технологических взрывов на устойчивость уступов карьеров	117
Малофеев Д.В., Черемных Т.В., Матвеев А.В. Анализ современных методик расчета параметров, принимаемых значений удельного расхода ВВ и кусковатости взорванных пород.	121
Малофеев Д.В., Черемных Т.В., Матвеев А.В. Методическая основа, современные способы расчета параметров БВР и определение гранулометрического состава взорванных пород.	123
III. МЕТАЛЛУРГИЧЕСКИЕ ПРОЦЕССЫ, ТЕХНОЛОГИИ, МАТЕРИАЛЫ И ОБОРУДОВАНИЕ	126
Кузнецов С.Н., Неунывахина Д.Т. Математическое моделирование процессов восстановления железа в условиях термохимического окускования конвертерных шламов.	126
Запольская Е.М. Разработка показателя тепловой эффективности стендов высокотемпературного разогрева футеровок сталеразливочных ковшей	129
Кузнецова О.В., Коноз К.С. Влияние неравномерности нагрева заготовок на угар металла в методических печах с механизированным подом	132
Числавлев В.В. Моделирование гидродинамических процессов в промежуточном ковше с использованием полнопрофильных перегородок	135
Думова Л.В., Уманский А.А. Исследование влияния химического состава рельсовой стали Э78ХСФ на образование поверхностных дефектов рельсов при их производстве	138

Сафонов С.О.	
Анализ конструктивных особенностей дутьевых устройств для продувки металлического расплава в конвертере	141
Горшенева О.В. Исследование эффективности внепечной обработки металла с использованием различных шлакообразующих смесей в ККЦ № 2 АО «ЕВРАЗ ЗСМК»	144
Башев В.С., Чумаевский А.В., Зыкова А.П. Исследование влияния нанопорошка Ті на микроструктуру и механические свойства сплава АК12	146
Думова Л.В., Уманский А.А. Исследование влияния параметров продувки азотом при обработке на установках доводки металла на его концентрацию в готовой стали и качество слитков	149
Ишин Д.Е. Исследование технологических особенностей продувки металла в 350-т конвертерах АО «ЕВРАЗ ЗСМК» с использованием высокомагнезиального флюса ФОМИ	152
Подаруев С.Е. Совершенствование конструкции погружных стаканов для непрерывной разливки рельсовой стали в ЭСПЦ АО «ЕВРАЗ ЗСМК»	155
Костина Д.А., Топоркова Ю.И. Исследование процесса выщелачивания пыли электродуговой плавки в аммиачно-хлоридных системах	157
Думова Л.В., Уманский А.А. Анализ влияния параметров внепечной обработки рельсовой электростали на образование оксидных неметаллических включений	159
Садыкина Р.А. Влияние химического состава чугуна на производительность кислородного конвертера.	162
Думова Л.В., Уманский А.А. Обоснование технико-экономической эффективности применения новых видов ферросплавов для раскисления рельсовой электростали	164
1	

Денисов Я.В., Уманский А.А.	
Исследование формоизменения внутренних дефектов	
непрерывнолитых заготовок при использовании	
различных методов производства рельсов.	167
Гальчун А.Г.	
Снижение расхода топлива на нагревательных печах	
AO «EBPA3 3CMK»	170
Шафикова С.А., Мухарлямова В.И.	
Оценка эффективности применения различных видов	
связующих в технологии переработки техногенного	
железосодержащего сырья	173
Ульянина В.А., Семенов В.М.	
Модель выбора связующего материала для процесса	
брикетирования железосодержащего техногенного сырья	178
	-, -
Каргапольцева Т.Н. Проблемы переработки вторичного свинцового сырья	181
	101
Дитков Д.В. Журба О.М.	
Использование конечно элементного моделирования	100
при прочностных расчетах прокатного оборудования	182
Журба О.М., Дитков Д.В.	
Определение работоспособности системы прокатная	
клеть – валковая арматура	185
Прудников В.А.	
Влияние отжига на линейное расширение листовой стали 10,	
изготовленной с использованием термоциклической деформации	188
Прудников В.А., Сазонов М.С.	
Воздействие термической обработки на микроструктуру	
и фазовый состав поршней двигателей ЯМЗ из сплава АК21	191
Прудников В.А., Духанин Ф.А.	
Формирование поверхности излома слитков полунепрерывного	
литья из заэвтектического силумина	194
Иванов А.А., Шабалин А.В.	
Влияние газового азотирования на стойкость инструмента	
для литья пластмасс	197
Иванов А.А. Изучение влияния химического состава на прокаливаемость	
стали марки 30ХГСА	200
	_00

Рахуба Е.М., Деев В.Б., Сметанюк С.В., Пономарева К.В.,	
Приходько О.Г. Особенности технологии получения художественных	
литых изделий из сплавов на основе олова	203
	202
Рахуба Е.М., Деев В.Б., Сметанюк С.В., Пономарева К.В., Приходько О.Г.	
Перспективы использования сплавов на основе олова	
для художественного литья	205
Рахуба Е.М., Деев В.Б., Сметанюк С.В., Пономарева К.В., Приходько О.Г.	
Технико-экономическое обоснование применения	
легкоплавких сплавов для художественного литья	207
Сметанюк С.В., Деев В.Б., Рахуба Е.М., Пономарева К.В., Приходько О.Г.	
Совместное использование полиуретана и отходов	
литейного производства для изготовления оригинальных	
художественных изделий	209
Яблонский М.А. Совершенствование технологии сварки рельсов	213
Долгополов А.Е., Мамедов Р.О.	
Исследования влияния физико-механических свойств XTC	
на качество отливок из железоуглеродистых сплавов	216
Шишкин П.Е., Шевченко Р.А., Патрушев А.О.	
Оптимизация режимов сварки рельсов на машине К 1100	
методами математического моделирования	219
Шишкин П.Е., Патрушев А.О.	
Моделирование процесса сварки рельсов на машине К 1100	222
Шевченко Р.А., Шишкин П.Е., Патрушев А.О.	
Расчет оптимальных режимов электроконтактной сварки	
железнодорожных рельсов.	225
Шевченко Р.А., Шишкин П.Е., Патрушев А.О.	
Применение методов математического моделирования	
для оптимизации технологических параметров	
процесса контактной сварки рельсов	229
Долгополов А.Е., Мамедов Р.О.	
Исследования влияния физико-механических свойств XTC	
на качество отливок из железоуглеродистых сплавов	232

Осетковский И.В., Гусев А.И.	
Влияния кобальта на механические свойства	
и структуру металла наплавленного порошковой	225
проволокой системы Fe-C-Si-Mn-Cr-Ni-Mo-V	235
Гусев А.И., Осетковский И.В.	
Исследование качества металла, наплавленного порошковой	
проволокой системы Fe-C-Si-Mn-Cr-Mo-Ni-V-Co.	237
Михно А.Р., Бурнаков М.А. Применение углеродфторсодержащих добавок для сварочных флюсов.	240
Бурнаков М.А., Михно А.Р.	
Возможность использования карбонатов в сварочных флюсах	242
Непомнящих А.С., Федотов Е.Е., Белов Д.Е. Исследование и разработка новых составов порошковой	
проволоки системы C-Si-Mn-Cr-V-Мо для наплавки	
прокатных валков	245
•	213
Федотов Е.Е., Непомнящих А.С., Белов Д.Е.	
Совершенствование состава порошковых проволок системы C-Si-Mn-Cr-W-V с целью повышения качества	
и эксплуатационных характеристик наплавленного слоя	248
	2.0
Патрушев А.О., Липатова У.И., Свистунов А.Д, Айматов В.Г.	
Разработка новых сварочных флюсов	250
	250
Патрушев А.О., Липатова У.И.	
Разработка нового сварочного флюса на основе шлака силикомарганца	252
•	232
Патрушев А.О., Липатова У.И., Махин Д.И.	
Использование барий-стронциевого карбонатита	255
при сварке под флюсом	255
Баротов Ф.Б.	
Нанометаллургия вольфрама: современное состояние	255
и перспективы развития	257
Мацела Е.В.	
Кристаллическая структура боридов хрома: актуализация	
и систематизация научно-технической информации	260
Алексеева Т.И.	
Применение карбида циркония в современной технике:	
настоящее и будущее	263

Алексеева Т.И.	
Анализ российского и мирового рынка нанокристаллического карбида циркония	265
Комрони М. Сырьевая база производства молибдена	268
Коновалова Х.А.	
Смолистые отходы коксохимического производства: практика и перспективы применения	271
Павловская Е.Д., Чистюхин Е.А., Джалолов Х.О. Комплексная аттестация цинксодержащих шламов предприятий по производству искусственных	
волокон Западно-Сибирского региона	275
Чистюхин Е.А., Джалолов Х.А., Павловская Е.Д. Переработка цинксодержащих отходов химико-металлургических производств Западно-Сибирского региона.	278
Попов А.С.	
Особенности улавливания аммиака при очистке коксового газа	280
Старцев С.С. Способы сухого тушения кокса: технологические	
особенности и перспективы применения	283
Ефимова К.А. Производство диборида титана: исследование современных технологических решений, оценка перспектив развития	286
Ефимова К.А. Применение диборида титана: мониторинг состояния и анализ перспектив.	289
Ефимова К.А. Перспективы применения диборида титана в покрытии катода алюминиевого электролизера.	292
Пономарев Н.С. Коксовая пыль КХП: практика и перспективы использования	295
Пенкин А.Е. Колонные флотомашины: сравнительный анализ и перспективы использования.	298

Ефимова К.А.	
Нанотехнологии в производстве многофункциональных соединений титана с бором и углеродом: состояние,	
исследование, результаты	300
Малюх М.А.	
Влияние меди на линейное расширение алюминиевых сплавов Al-Si	304
IV. ЭКОЛОГИЯ. БЕЗОПАСНОСТЬ. РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ	308
Сазонова Я.Е. Влияние способа отопления котельных агрегатов на вредные выбросы в атмосферу	308
Садковский В.С. Оценка экологичекого риска от выбросов в атмосферу доменного цеха.	311
Злобина Е.С. Переработка высокозольных угольных отходов в топливо методом масляной агломерации.	316
Брызгалова А.Ю., Семичева И.Р. Исследования содержания тяжелых металлов в сточных водах металлургического производства.	319
Рогозина А.В., Обгольц Е.О. Состояние вопроса загрязнения почв тяжелыми металлами г. Новокузнецка.	323
Дятлова К.А. Каталитическое обезвреживание выбросов коксохимического производства на базе металлургических шлаков	326
Перегоедова К.А. Возможность глубокого обезвоживания отходов углеобогащения с помощью фильтр-пресса	331
Кононова А.С. Решение задач энергосбережения на молочных фермах с помощью тепловых насосов.	334
Колпаков Д. Е. Способы оценки воздействия участка открытых горных работ на состояние подземных вод	337

Мелентьева А.В., Зинченко Г.Г.	
Влияние деятельности угольного предприятия на изменение качества воды	342
Клишин М.В. О рациональном использовании отходов углеобогащения	347
	517
Зонов Д.И., Устинова А.Г., Шишкин А.А. Источники энергии для тепловых насосов	350
Шалаева Н.А. Каталитическая очистка выбросов цехов улавливания и переработки химических продуктов коксования	352
Кравченко К.Н. Использование вторичного сырья, содержащего V_2O_5 для производства катализатора.	357
Дроздова А.В. Актуальность техники безопасности на электроэнергетических предприятиях	360
Мещерякова Д.Е., Пушкарёва Н.Ю., Скрябина Е.А. Биологический этап рекультивации нарушенных земель угольного разреза.	363
Каримова И.О. Построение дерева событий для опасного производственного объекта: нефтесборного пункта.	366
Воронцов А.В. Влияние высоковольтных ЛЭП и магнитного поля промышленной частоты на безопасность жизнедеятельности людей.	371
Птухина Т.Д., Фёдоров В.М. Теплообменики с оребренными поверхностями	374
Шенцова М.А., Пушкарёва Н.Ю., Скрябина Е.А. Технологические основы биологической очистки сточных вод городских очистных сооружений	376
Квашевая Е.А., Ушакова Е.С., Козлова И.В. Сбор аварийных разливов нефти с водных поверхностей сорбентами на основе вторичного сырья.	380
Козлова И.В., Квашевая Е.А. Получение альтернативной энергии	383

Истомин И.Б.	
Использование техногенных углеродсодержащих	
отходов в качестве нагревательных элементов	386
Истомин И.Б. Многофункциональная робототехническая платформа для ведения аварийно-спасательных работ на подземных объектах.	389
Сысолятин А.С. Козлова И.В., Ушаков К.Ю.	
Влияние дымовых газов угольной генерации на окружающую среду и способы его очистки	392
Попов В.С. Поиск новых методов утилизации полимеров	395
Уманская Ю.В. Оценка экологического состояния почвы Юго-Восточного административного округа Москвы.	398
Никокошева А.А., Захарова Н.С. Переработка и утилизация автомобильных покрышек	400
Козлова Н.Е., Абдыкалык Т.Е. Комплексная стоимостная оценка энергоэкологического качества топлива.	403
Татаринова Е.С., Чикурова И.В.	
Прогнозирование эмиссии диоксида углерода на основе углеродного потенциала топлива	409
Хертек А-Д.А. Разработка универсального элемента тепловой изоляции	412
Хертек А.А. Создание обобщенной модели теплопроводности газов	416
Пуликов П.С. Использование тепловых насосов для увеличения эффективности работы ТЭЦ	420
Колегова А.А. Система международных документов по регулированию проблемы глобального изменения климата	422
Александрова О.А., Алшынбаев С.Д. Экологическое состояние реки Абы: настоящее и будущее	425

Научное издание

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ ЕСТЕСТВЕННЫЕ И ТЕХНИЧЕСКИЕ НАУКИ Часть II

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых

Выпуск 21

Под общей редакцией М.В. Темлянцева Технический редактор Г.А. Морина Компьютерная верстка Н.В. Ознобихина

Подписано в печать 26.04.2017 г. Формат бумаги 60х84 1/16. Бумага писчая. Печать офсетная. Усл. печ. л. 25,8 Уч.-изд. л. 28,2. Тираж 300 экз. Заказ № 236

Сибирский государственный индустриальный университет 654007, г. Новокузнецк, ул. Кирова, 42 Издательский центр СибГИУ