Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет»

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ЕСТЕСТВЕННЫЕ И ТЕХНИЧЕСКИЕ НАУКИ

ВЫПУСК 26

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых 17 – 18 мая 2022 г.

ЧАСТЬ І

Под общей редакцией профессора С.В. Коновалова

Новокузнецк 2022

Редакционная коллегия:

д-р техн. наук, профессор Коновалов С.В., д-р физ.-мат. наук, профессор Громов В.Е., д-р техн. наук, профессор Фрянов В.Н., канд. техн. наук, доцент Чаплыгин В.В., д-р техн. наук, профессор Козырев Н.А., д-р техн. наук, доцент Фастыковский А.Р., канд. техн. наук, доцент Риб С.В.

H 340

Наука и молодежь: проблемы, поиски, решения: труды Всероссийской научной конференции студентов, аспирантов и молодых ученых, 17–18 мая 2022 г. Выпуск 26. Часть І. Естественные и технические науки / Министерство науки и высшего образования Российской Федерации, Сибирский государственный индустриальный университет; под общ. ред. С.В. Коновалова — Новокузнецк; Издательский центр СибГИУ, 2022. — 419 с.: ил.

ISSN 2500-3364

Представлены труды Всероссийской научной конференции студентов, аспирантов и молодых ученых по результатам научно-исследовательских работ. Первая часть сборника посвящена актуальным вопросам в области естественных наук, перспективных технологий разработки месторождений полезных ископаемых; металлургических процессов, технологий, материалов и оборудования.

Материалы сборника представляют интерес для научных и научнотехнических работников, преподавателей, аспирантов и студентов вузов.

СОДЕРЖАНИЕ

І ЕСТЕСТВЕННЫЕ НАУКИ	2
ДЕФОРМАЦИОННОЕ УПРОЧНЕНИЕ СТАЛЕЙ РАЗЛИЧНЫХ СТРУКТУРНЫХ КЛАССОВ Аксёнова К.В., Ващук Е.С.	3
МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ СТРУКТУРНЫХ ИЗМЕНЕНИЙ ОЦК-КРИСТАЛЛОВ ПРИ КРАТКОВРЕМЕННОМ ВЫСОКОЭНЕРГЕТИЧЕСКОМ ЛАЗЕРНОМ ВОЗДЕЙСТВИИ <i>Гостевская А.Н.</i>	6
МОДЕЛИРОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ КОСТНОЙ ТКАНИ, РАСПОЛОЖЕННОЙ ВОЗЛЕ ИМПЛАНТАТА С ЭЛЕКТРОВЗРЫВНЫМ БИОИНЕРТНЫМ ПОКРЫТИЕМ СИСТЕМЫ Ті-Zr ИЛИ Ті-Nb Филяков А.Д., Романов Д.А., Невский С.А.	10
ИСПОЛЬЗОВАНИЕ РАСТРОВОЙ ЭЛЕКТРОННОЙ МИКРОСКОПИИ ДЛЯ АНАЛИЗА МАТЕРИАЛОВ Дробышев В.К., Гостевская А.Н.	
УСТАЛОСТНОЕ РАЗРУШЕНИЕ ТЕХНИЧЕСКИ ЧИСТОГО АЛЮМИНИЯ МАРКИ А5М В МАГНИТНОМ ПОЛЕ 0,2 ТЛ Шляров В.В., Серебрякова А.А., Аксенова К.В.	18
ВЛИЯНИЕ МАГНИТНОГО ПОЛЯ ДО 0,5Тл НА ПАРАМЕТР ПЛАСТИЧНОСТИ СВИНЦА МАРКИ С2 Серебрякова А.А., Шляров В.В.	22
ПРИМЕНЕНИЕ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ ПРИ ИССЛЕДОВАНИИ ЗАКОНОМЕРНОСТЕЙ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ <i>Кузнецова В.А., Панова В.С.</i>	24
ИССЛЕДОВАНИЕ МИКРОСТРУКТУРЫ И МИКРОТВЕРДОСТИ ПОКРЫТИЯ ИЗ ВЫСОКОЭНТРОПИЙНОГО СПЛАВА СИСТЕМЫ Al-Co-Cr-Fe-Ni, НАНЕСЕННОГО НА СПЛАВ АМг5 С ПОМОЩЬЮ ПРОВОЛОЧНО-ДУГОВОГО АДДИТИВНОГО ПРОИЗВОДСТВА Авчиник А.В., Осинцев К.А., Панченко И.А	29
ВЛИЯНИЕ ЭЛЕКТРОННО-ПУЧКОВОЙ ОБРАБОТКИ НА НАПРЯЖЕННО- ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ СПЛАВА СИСТЕМЫ Al-Co-Cr-Fe-Ni, ПОЛУЧЕННОГО С ПОМОЩЬЮ ПРОВОЛОЧНО-ДУГОВОГО АДДИТИВНОГО ПРОИЗВОДСТВА	
Осинцев К.А., Данилушкин В.С., Епифанцев М.А., Воронин С.В.,	31

ПОЛУЧЕНИЕ НАНОДИСПЕРСНОГО КАРБИДА КРЕМНИЯ – УПРОЧНЯЮЩЕЙ ФАЗЫ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ НИКЕЛЯ И ХРОМА <i>Безрукова Е.С.</i>	307
РАСШИРЕНИЕ СЫРЬЕВОЙ БАЗЫ ЧЕРНОЙ МЕТАЛЛУРГИИ З А СЧЕТ ОСВОЕНИЯ НОВЫХ МЕСТОРОЖДЕНИЙ ТОМСКОЙ ОБЛАСТИ Федулова А.В	311
АНАЛИЗ ТЕХНИЧЕСКИХ РЕШЕНИЙ ПО СОВЕРШЕНСТОВАНИЮ ПРОИЗВОДСТВА ПРОКАТА НА НЕПРЕРЫВНОМ СРЕДНЕСОРТНОМ СТАНЕ 450 AO «ЕВРАЗ ЗСМК» Пак В.Е., Маркалин Ю.А., Зохидов Х.Н	314
СОВЕРШЕНСТВОВАНИЕ КОНСТРУКЦИЙ УЗЛОВ ПРОКАТНОЙ КЛЕТИ С ЦЕЛЬЮ ПОВЫШЕНИЯ КАЧЕСТВА ГОТОВОГО ПРОКАТА НА МЕЛКОСОРТНОМ СТАНЕ 250-1 АО «ЕВРАЗ ЗСМК» Маркалин Ю.А., Зохидов Х.Н, Пак В.Е	319
ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРОИЗВОДСТВА СОРТОВОГО ПРОКАТА Вахроломеев В.А., Глухов М.И., Захидов Х.М., Маркалин Ю.А	
АНАЛИЗ ПУТЕЙ ПОВЫШЕНИЯ КАЧЕСТВА ГОТОВОЙ ПРОДУКЦИИ НА СРЕДНЕСОРТНОМ СТАНЕ 450 AO «ЕВРАЗ ЗСМК» Зохидов Х.Н., Маркалин Ю.А., Пак В.Е	
ИССЛЕДОВАНИЕ СТРУКТУРЫ И СВОЙСТВ СЛИТКОВ ИЗ ПОРШНЕВЫХ СИЛУМИНОВ НА ОСНОВЕ AI-15 % Si <i>Прудников В.А., Рексиус В.С.</i>	332
ВЛИЯНИЕ ОБРАБОТКИ ШИХТЫ И РАСПЛАВА НА МИКРОСТРУКТУРУ СИЛУМИНОВ С 3-15% SI <i>Ломиворотов Н.П., Полунин А.М., Юркина М.С.</i>	335
РЕЛЬСОВАЯ СТАЛЬ: МАРКА И ХАРАКТЕРИСТИКИ <i>Михеева Д.В.</i>	341
ВОЗДЕЙСТВИЕ МОДИФИЦИРОВАНИЯ НА СТРУКТУРУ И ФИЗИЧЕСКИЕ СВОЙСТВА ЗАЭВТЕКТИЧЕСКИХ СИЛУМИНОВ Полунин А.М., Ломиворотов Н.П., Юркина М.С.	
ОСОБЕННОСТИ ВЛИЯНИЯ МОДИФИЦИРОВАНИЯ И ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА МИКРОСТРУКТУРУ И МИКРОТВЕРДОСТЬ СПЛАВА AL-11%SI	
Юркина М.С., Полунин А.М., Ломиворотов Н.П. ВЛИЯНИЕ РЕЖИМОВ СВАРКИ ПОД НОВЫМ МАРГАНЕЦСОДЕРЖАЩИМ ФЛЮСОМ НА МЕХАНИЧЕСКИЕ СВОЙСТВА СВАРНОГО СОЕДИНЕНИЯ ИЗ СТАЛИ 09Г2С Гусева Д.А.	
ВЛИЯНИЕ ПАРАМЕТРОВ ЦИКЛИЧЕСКОЙ КОВКИ НА СВОЙСТВА СТАЛИ 10 Закирова Ш.К	
ВЛИЯНИЕ ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА МИКРОСТРУКТУРУ ПОРШНЯ ИЗ СПЛАВА АК21 Зокирова Г.К	362

нию со сплавами обычного приготовления. С увеличением содержания кремния указанные изменения свойств проявляются наиболее заметно.

Библиографический список

- 1. Добаткин В.И. Гранулируемые алюминиевые сплавы / В.И. Добаткин, В.И. Елагин. Москва : Металлургия, 1981. 176 с.
- 2. Спеченные материалы из алюминиевых порошков / В.Г. Гопиенко, М.Е. Смагоринский, А.А. Григорьев, А.Д. Беллавин; под ред. Смагоринского М.Е. Москва: Металлургия, 1993. 320 с.
- 3.Polmear I. J. Light alloys: from traditional alloys to nanocrystals. Amsterdam: Elsevier Ltd, 2005.– 421 p.
- 4. Афанасьев В.К. О влиянии кремния на тепловое расширение алюминия А7 / В.К. Афанасьев, А.В. Горшенин, М.В. Попова, А.Н. Прудников, М.А. Старостина // Металлургия машиностроения. 2010. № 6. С. 23-26.
- 5. Строганов Г.Б. Сплавы алюминия с кремнием / Г.Б. Строганов, В.А. Ротенберг, Г.Б. Гершман. Москва: Металлургия, 1977. 272 с.
- 6. Напалков В.И. Легирование и модифицирование алюминия и магния / В.И. Напалков, С.В. Махов. Москва : МИСИС, 2002. 376 с.
- 7. Афанасьев В.К. Новые способы обработки жидких сплавов алюминия с 30-50% кремния / В.К. Афанасьев, М.В. Попова // Известия высших учебных заведений. Черная металлургия. 2001. № 2. С. 29-31.
- 8. Кузнецов А.О. Модифицирование силуминов разные подходы для одной системы легирования / А.О. Кузнецов, Д.А. Шадаев, В.Ю. Конкевич, С.Т. Бочвар, Т.М. Кунявская // Технология легких сплавов. 2014. №4. С. 75—81.
- 9. Ушакова В.В. О влиянии обработки расплава на линейное расширение сплавов Al -20÷40% Si / В.В. Ушакова, М.В. Попова, З.А. Лузянина // Известия высших учебных заведений. Черная металлургия. − 1995. − № 4. − С. 69.
- 10. Попова М.В. Наследственное влияние обработки шихты и расплава на терморасширение заэвтектических силуминов / М.В. Попова, А.А. Ружило // Литейное производство. 2000. № 10. С. 4-6.

УДК 669.716: 669.018.28

ОСОБЕННОСТИ ВЛИЯНИЯ МОДИФИЦИРОВАНИЯ И ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА МИКРОСТРУКТУРУ И МИКРОТВЕРДОСТЬ СПЛАВА AL-11%SI

Юркина М.С., Полунин А.М., Ломиворотов Н.П. Научный руководитель: д-р техн. наук, профессор Попова М.В.

Сибирский государственный индустриальный университет, г. Новокузнецк, e-mail: yurkina_99@list.ru

Изучено влияние модифицирования сульфатом меди и термической обработки на изменение параметров микроструктуры и микротвердость

структурных составляющих доэвтектического силумина Al-11%Si.

Ключевые слова: модифицирование, термическая обработка, силумин, микроструктура, микротвердость.

Для изучения влияния модифицирования расплава сульфатом меди и термической обработки на структуру и свойства сплава Al–11%Si проводили металлографические и дюрометрические исследования. Металлографические исследования проводили на оптическом микроскопе Carl Zeiss AxioObserver Alm при увеличении 500. Исследование микротвердости проводили на микротвердомере 402 MVD.

Расплав обрабатывали сульфатом меди в количестве 0,2% (без выстаивания) и 1% без выстаивания и с выстаиванием в течение 1 часа при температуре 900°С. Затем производили заливку в холодный алюминиевый кокиль при температуре 850°С и 720°С соответственно.

Модифицирование способствует улучшению структуры благодаря тому, что модификаторы даже в малых концентрациях измельчают выделения первичного и эвтектического кремния. После модифицирования дендриты алюминия приобретают более тонкое строение. Такие структурные изменения приводят к получению более благоприятного комплекса свойств силуминов [1, 2].

Изменение структуры вследствие нагрева также оказывает влияние на физико-механические свойства силуминов [4].

В качестве способов термической обработки для силуминов широкое распространение получили закалка и старение. После закалки эти сплавы обладают высокими механическими свойствами, что связано с образованием пересыщенного твердого раствора легирующих компонентов в алюминии. В результате старения происходит распад пересыщенного твердого раствора и, следовательно, выделение промежуточных фаз в дисперсной форме [6].

Металлографический анализ сплава Al–11%Si позволил установить, что после обработки расплава 0,2% и 1% сульфата меди без выстаивания в его структуре кроме участков модифицированной эвтектики и дендритов твердого раствора наблюдается эвтектика игольчатого строения (рисунок 1).

Установлено также, что в результате обработки расплава 0,2% сульфата меди структура сплава Al-11%Si представляет собой дендриты α-твердого раствора и неравномерно модифицированную алюминиево-кремниевую эвтектику (рисунок 1, б). После повышения количества модификатора до 1% в структуре доэвтектического силумина преобладает эвтектика игольчатого строения (рисунок 1, в), кроме того, дендриты α-твердого раствора в некоторых областях структуры имеют более округлую форму (сфероидизированы) и меньшие размеры (рисунок 1, в).

После выстаивания при температуре 900°С в течение 1 часа расплава Al–11%Si, обработанного 1% CuSO₄, структура силумина представляет собой дендриты α-твердого раствора и перемодифицированную эвтектику(рисунок 1, г). Перемодифицирование структуры произошло вследствие

использования достаточно высокой температуры обработки расплава и длительного времени выстаивания.

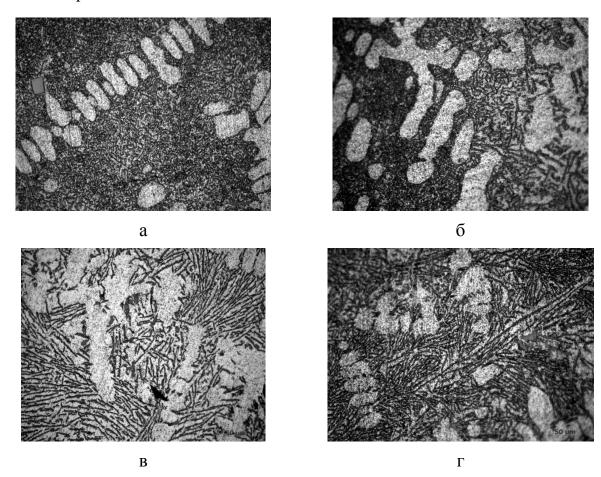


Рисунок 1 — Микроструктура сплава Al—11% Si (х 500): а — исходный, без обработки; б — обработка 0.2 % CuSO₄; в — обработка 1 % CuSO₄, без выстаивания расплава; г — обработка 1 % CuSO₄, с выстаиванием расплава

Результаты определения микротвердости структурных составляющих сплава Al–11%Si после обработки расплава по указанным режимам представлены в таблице 1. Установлено, что модифицирование сульфатом меди повышает микротвердость α-твердого раствора и эвтектики сплава Al–11 %Si.

Таблица 1 — Влияние обработки расплава сульфатом меди на микротвердость структурных составляющих сплава Al — 11%Si

	Микротвердость (HV)		
Обработка расплава	эвтектика		α-твердый
Оориоотки рисплави	мелкодисперсная	игольчатого	раствор
		строения	
без обработки	66	_	47
0,2% CuSO ₄	68	69	57
1% CuSO ₄ (без выстаивания)	78	70	60
1% CuSO ₄ (с выстаиванием)	_	76	57

В результате проведения металлографического анализа термически обработанного сплава Al-11%Si установлено, что после закалки структура силумина представляет собой дендриты твердого раствора и неравномерно модифицированную алюминиево-кремниевую эвтектику (рисунок 2, б).

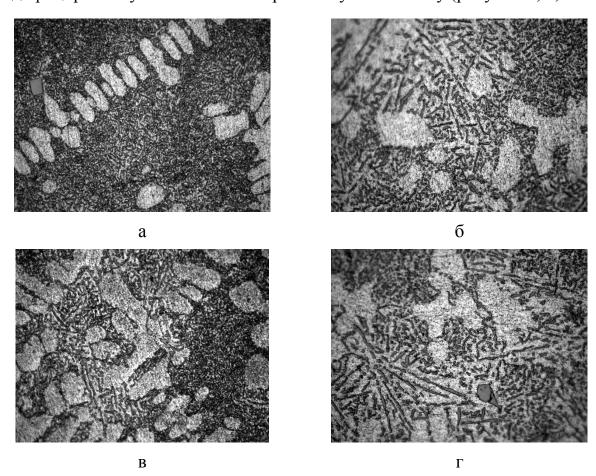


Рисунок 2 — Микроструктура сплава Al-11% Si(a, б, в, г) - х 500, е — х 200: а — исходный (без термообработки); в — 250 °C, 10 часов; б — 550°C, 1 час, закалка в воду; г — 550°C, 1 час + 250°C, 10 часов

В процессе нагрева силуминов при температуре выше 500°С происходит сфероидизация частиц кремния, что способствует повышению механических свойств [1].

В результате старения, так же, как и после закалки, наблюдается неравномерно модифицированная эвтектика и дендриты α -твердого раствора. Однако после термической обработки в структуре силумина наблюдаются участки «перемодифицированной» эвтектики (рисунок 2, в), что, повидимому, связано с длительностью выдержки при старении. В результате закалки и последующего старения структура силумина представляет собой также неравномерно модифицированную эвтектику и дендриты твердого раствора (рисунок 2, г). Имеются участки эвтектики не только зернистого, но и игольчатого строения (рисунок 2, г).

В результате определения микротвердости установлено, что закалка и старение, проведенные раздельно, приводят к снижению микротвердости

структурных составляющих, а совместное их проведение повышает их микротвердость (таблица 2).

Таблица 2 — Влияние термической обработки на микротвердость структурных составляющих сплава Al — 11% Si

	Микротвердость (HV)		
Режим термической обработки	эвтектика		α-твердый
	модифицирова нная	игольчатого строения	раствор
без термической обработки	66	_	47
550°C, 1 ч, закалка в воде	51	57	45
250°С, 10 ч, охл. на воздухе	64	62	43
550°C, 1 ч, вода + 250°C, 10 ч, воздух	68	75	49

Таким образом, в результате проведения исследований было установлено, что сульфат меди является эффективным модификатором эвтектики в сплаве Al–11%Si. В связи с этим модифицирование сульфатом меди и термическую обработку можно использовать в качестве способов улучшения структуры и свойств сплава Al–11%Si.

Библиографический список

- 1. Водород и свойства сплавов алюминия с кремнием / В.К. Афанасьев, И.Н. *Афанасьева*, М.В. Попова [и др.]. Абакан: Хакасское кн. изд-во, 1998. 192 с.
- 2. Производство алюминиевых сплавов: учеб. пособие / Г.В. Галевский, В.Б. Деев, Н.М. Кулагин [и др.].— Москва: Флинта: Наука, 2006.—288 с.
- 3. Мальцев М.В. Металлография промышленных цветных металлов и сплавов / М.В. Мальцев. Москва : Металлургия, 1970. 364 с.
- 4. Строганов Г.Б. Высокопрочные литейные алюминиевые сплавы / Г.Б. Строганов. Москва : Металлургия, 1985. 216 с.
- 5. Силумины. Атлас микроструктур и фрактограмм промышленных сплавов: справочное издание/ А.Г. Пригунова, Н.А. Белов, Ю.Н. Таран [и др.]. Москва: МИСИС, 1996. 175 с., ил.
- 6. Металловедение алюминия и его сплавов: справочное издание / А.И. Беляев, О.С. Бочвар, Н.Н. Буйнов [и др.]. Москва : Металлургия, 1983. 280с., ил.