Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет»

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ЕСТЕСТВЕННЫЕ И ТЕХНИЧЕСКИЕ НАУКИ

ВЫПУСК 26

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых 17 – 18 мая 2022 г.

ЧАСТЬ І

Под общей редакцией профессора С.В. Коновалова

Новокузнецк 2022

Редакционная коллегия:

д-р техн. наук, профессор Коновалов С.В., д-р физ.-мат. наук, профессор Громов В.Е., д-р техн. наук, профессор Фрянов В.Н., канд. техн. наук, доцент Чаплыгин В.В., д-р техн. наук, профессор Козырев Н.А., д-р техн. наук, доцент Фастыковский А.Р., канд. техн. наук, доцент Риб С.В.

H 340

Наука и молодежь: проблемы, поиски, решения: труды Всероссийской научной конференции студентов, аспирантов и молодых ученых, 17–18 мая 2022 г. Выпуск 26. Часть І. Естественные и технические науки / Министерство науки и высшего образования Российской Федерации, Сибирский государственный индустриальный университет; под общ. ред. С.В. Коновалова — Новокузнецк; Издательский центр СибГИУ, 2022. — 419 с.: ил.

ISSN 2500-3364

Представлены труды Всероссийской научной конференции студентов, аспирантов и молодых ученых по результатам научно-исследовательских работ. Первая часть сборника посвящена актуальным вопросам в области естественных наук, перспективных технологий разработки месторождений полезных ископаемых; металлургических процессов, технологий, материалов и оборудования.

Материалы сборника представляют интерес для научных и научнотехнических работников, преподавателей, аспирантов и студентов вузов.

СОДЕРЖАНИЕ

І ЕСТЕСТВЕННЫЕ НАУКИ	2
ДЕФОРМАЦИОННОЕ УПРОЧНЕНИЕ СТАЛЕЙ РАЗЛИЧНЫХ СТРУКТУРНЫХ КЛАССОВ Аксёнова К.В., Ващук Е.С.	. 3
МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ СТРУКТУРНЫХ ИЗМЕНЕНИЙ ОЦК-КРИСТАЛЛОВ ПРИ КРАТКОВРЕМЕННОМ ВЫСОКОЭНЕРГЕТИЧЕСКОМ ЛАЗЕРНОМ ВОЗДЕЙСТВИИ <i>Гостевская А.Н.</i>	6
МОДЕЛИРОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ КОСТНОЙ ТКАНИ, РАСПОЛОЖЕННОЙ ВОЗЛЕ ИМПЛАНТАТА С ЭЛЕКТРОВЗРЫВНЫМ БИОИНЕРТНЫМ ПОКРЫТИЕМ СИСТЕМЫ Ті-Zr ИЛИ Ті-Nb Филяков А.Д., Романов Д.А., Невский С.А	10
ИСПОЛЬЗОВАНИЕ РАСТРОВОЙ ЭЛЕКТРОННОЙ МИКРОСКОПИИ ДЛЯ АНАЛИЗА МАТЕРИАЛОВ Дробышев В.К., Гостевская А.Н	
УСТАЛОСТНОЕ РАЗРУШЕНИЕ ТЕХНИЧЕСКИ ЧИСТОГО АЛЮМИНИЯ МАРКИ А5М В МАГНИТНОМ ПОЛЕ 0,2 ТЛ Шляров В.В., Серебрякова А.А., Аксенова К.В.	
ВЛИЯНИЕ МАГНИТНОГО ПОЛЯ ДО 0,5Тл НА ПАРАМЕТР ПЛАСТИЧНОСТИ СВИНЦА МАРКИ С2 Серебрякова А.А., Шляров В.В	22
ПРИМЕНЕНИЕ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ ПРИ ИССЛЕДОВАНИИ ЗАКОНОМЕРНОСТЕЙ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ <i>Кузнецова В.А., Панова В.С.</i>	24
ИССЛЕДОВАНИЕ МИКРОСТРУКТУРЫ И МИКРОТВЕРДОСТИ ПОКРЫТИЯ ИЗ ВЫСОКОЭНТРОПИЙНОГО СПЛАВА СИСТЕМЫ Al-Co-Cr-Fe-Ni, НАНЕСЕННОГО НА СПЛАВ АМг5 С ПОМОЩЬЮ ПРОВОЛОЧНО-ДУГОВОГО АДДИТИВНОГО ПРОИЗВОДСТВА Авчиник А.В., Осинцев К.А , Панченко И.А	29
ВЛИЯНИЕ ЭЛЕКТРОННО-ПУЧКОВОЙ ОБРАБОТКИ НА НАПРЯЖЕННО- ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ СПЛАВА СИСТЕМЫ Al-Co-Cr-Fe-Ni, ПОЛУЧЕННОГО С ПОМОЩЬЮ ПРОВОЛОЧНО-ДУГОВОГО АДДИТИВНОГО ПРОИЗВОДСТВА Осинцев К.А., Данилушкин В.С., Епифанцев М.А., Воронин С.В.,	
ВЛИЯНИЕ ВНЕШНЕГО МАГНИТНОГО ПОЛЯ НА СТРУКТУРУ АЛЮМИНИЯ, ПОЛУЧЕННОГО МЕТОДОМ ПРОВОЛОЧНО-ДУГОВОГО АДДИТИВНОГО ПРОИЗВОДСТВА $\ensuremath{\mathit{Лей}}\xspace X$, $\ensuremath{\mathit{Чэнь}}\xspace C$	

ПОЛУЧЕНИЕ НАНОДИСПЕРСНОГО КАРБИДА КРЕМНИЯ – УПРОЧНЯЮЩЕЙ ФАЗЫ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ НИКЕЛЯ И ХРОМА <i>Безрукова Е.С.</i>	307
РАСШИРЕНИЕ СЫРЬЕВОЙ БАЗЫ ЧЕРНОЙ МЕТАЛЛУРГИИ З А СЧЕТ ОСВОЕНИЯ НОВЫХ МЕСТОРОЖДЕНИЙ ТОМСКОЙ ОБЛАСТИ Федулова А.В	311
АНАЛИЗ ТЕХНИЧЕСКИХ РЕШЕНИЙ ПО СОВЕРШЕНСТОВАНИЮ ПРОИЗВОДСТВА ПРОКАТА НА НЕПРЕРЫВНОМ СРЕДНЕСОРТНОМ СТАНЕ 450 AO «ЕВРАЗ ЗСМК» Пак В.Е., Маркалин Ю.А., Зохидов Х.Н	314
СОВЕРШЕНСТВОВАНИЕ КОНСТРУКЦИЙ УЗЛОВ ПРОКАТНОЙ КЛЕТИ С ЦЕЛЬЮ ПОВЫШЕНИЯ КАЧЕСТВА ГОТОВОГО ПРОКАТА НА МЕЛКОСОРТНОМ СТАНЕ 250-1 АО «ЕВРАЗ ЗСМК» Маркалин Ю.А., Зохидов Х.Н, Пак В.Е	319
ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРОИЗВОДСТВА СОРТОВОГО ПРОКАТА Вахроломеев В.А., Глухов М.И., Захидов Х.М., Маркалин Ю.А	325
АНАЛИЗ ПУТЕЙ ПОВЫШЕНИЯ КАЧЕСТВА ГОТОВОЙ ПРОДУКЦИИ НА СРЕДНЕСОРТНОМ СТАНЕ 450 АО «ЕВРАЗ ЗСМК» Зохидов Х.Н., Маркалин Ю.А., Пак В.Е	
ИССЛЕДОВАНИЕ СТРУКТУРЫ И СВОЙСТВ СЛИТКОВ ИЗ ПОРШНЕВЫХ СИЛУМИНОВ НА ОСНОВЕ AI-15 % Si <i>Прудников В.А., Рексиус В.С.</i>	332
ВЛИЯНИЕ ОБРАБОТКИ ШИХТЫ И РАСПЛАВА НА МИКРОСТРУКТУРУ СИЛУМИНОВ С 3-15% SI <i>Ломиворотов Н.П., Полунин А.М., Юркина М.С.</i>	335
РЕЛЬСОВАЯ СТАЛЬ: МАРКА И ХАРАКТЕРИСТИКИ <i>Михеева Д.В.</i>	
ВОЗДЕЙСТВИЕ МОДИФИЦИРОВАНИЯ НА СТРУКТУРУ И ФИЗИЧЕСКИЕ СВОЙСТВА ЗАЭВТЕКТИЧЕСКИХ СИЛУМИНОВ Полунин А.М., Ломиворотов Н.П., Юркина М.С.	
ОСОБЕННОСТИ ВЛИЯНИЯ МОДИФИЦИРОВАНИЯ И ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА МИКРОСТРУКТУРУ И МИКРОТВЕРДОСТЬ СПЛАВА AL-11%SI	
Юркина М.С., Полунин А.М., Ломиворотов Н.П. ВЛИЯНИЕ РЕЖИМОВ СВАРКИ ПОД НОВЫМ МАРГАНЕЦСОДЕРЖАЩИМ ФЛЮСОМ НА МЕХАНИЧЕСКИЕ СВОЙСТВА СВАРНОГО СОЕДИНЕНИЯ ИЗ СТАЛИ 09Г2С Гусева Д.А.	
ВЛИЯНИЕ ПАРАМЕТРОВ ЦИКЛИЧЕСКОЙ КОВКИ НА СВОЙСТВА СТАЛИ 10 Закирова Ш.К	
ВЛИЯНИЕ ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА МИКРОСТРУКТУРУ ПОРШНЯ ИЗ СПЛАВА АК21 Зокирова Г.К	362

РЕЛЬСОВАЯ СТАЛЬ: МАРКА И ХАРАКТЕРИСТИКИ

Михеева Д.В.

Научный руководитель: д-р техн. наук, профессор Попова М.В.

Сибирский государственный индустриальный университет, г. Новокузнецк, e-mail: dashamiheeva 1803 1997 @ mail.ru

Рельсовая сталь - это углеродистая легированная сталь, которая легируется кремнием и марганцем. Углерод дает стали такие характеристики, как твердость и износостойкость. Марганец увеличивает эти качества и повышает вязкость. Кремний также делает рельсовую сталь более твердой и износостойкой. Рельсовую сталь может стать еще качественнее с помощью микролегирующих добавок.

Ключевые слова: рельсовая сталь, материалы, химический состав, компоненты, марка, применение.

Рельсовая сталь

По раскислителям делится на 2 принципиальные группы:

I – вредные примеси убираются с помощью ферромарганца или ферросилиция;

II- для удаления кислорода применяются алюминиевые включения (считающиеся более предпочтительными из-за их природы).

Химический состав и его преимущества

Для основных марок стали ЖД рельса он регламентирован ГОСТом Р 554 97-2013. Данный межгосударственный стандарт устанавливает, что основной компонент – это железо, но помимо него в сплав обязан входить еще ряд элементов – в следующих массовых долях:

Углерод (карбон) — от 0,71 до 0,82%, усиливает механические свойства примерно вдвое. Его частицы связывают ферро-молекулы, превращая их в карбиды, которые гораздо прочнее и крупнее. И высокотемпературные воздействия становятся не настолько критичными.

Марганец — от 0,25 до 1,05 %, улучшает ударную вязкость (на четверть-треть), а также износостойкость и твердость. Причем пластичность не ухудшается, что самым положительным образом влияет на технологичность готового прокатного изделия.

Кремний – от 0,18 до 0,4 %, требуется для удаления кислородных примесей, а значит и для оптимизации внутренней кристаллической структуры материала. С такой добавкой существенно уменьшается вероятность появления ликвационных пятен, а долговечность повышается примерно в 1,4 раза.

Ванадий – от 0,012 до 0,08%, в зависимости от конкретной марки стали для изготовления рельсов. Важен для обеспечения достаточной контактной прочности. В соединении с углеродом образует карбиды, повышающие предел выносливости (а именно нижний его порог).

Отдельного рассмотрения заслуживают нежелательные или даже вредные примеси, вычленить которые до конца с помощью современных технологий пока не удается. Это:

Азот — от 0,03 до 0,07%, плох тем, что нейтрализует легирующий эффект. Из-за него в толще профиля образуются нитриды, которые не поддаются термоупрочнению, а значит снижают механические свойства готовых элементов ВСП.

Сера – до 0,045%. Ее включения не дают сплаву быть податливым при горячей обработке под давлением. В результате после проката может получиться изделие, склонное к образованию трещин, и его придется сразу же отбраковать.

Фосфор – до 0,035. Он тоже повышает хрупкость металлоконструкции. С ним быстро накапливается усталость, что приводит к скорым расслоениям и разломам.

Ради максимальной наглядности представляем химический состав популярных марок стали для железнодорожных рельсов в следующей сводной таблице (таблица 1).

Таблица 1- Марки рельсовой стали и их химический состав.

Марка	Массовая доля элементов %								
стали	Углерол	Марганец	Кремний	Ваналий	Титан	Хром	Фосфор	Cepa	Алюминий
	, and the second	P				P	Не более	•	
К78ХСФ	0,76-		0,40-0,80	0,05-		0,040-	0,025	0.025	0,005
Э78ХСФ	0,82		0,40-0,80	0,15		0,60	0,023	0,023	0,003
М76Ф				0.02			0,035	0,040	
К76Ф				0,03- 0,15			0,030	0,035	
Э76Ф		0,75-1,05	0,25-0,45	0,13	0,007- 0,025		0,025	0,030	0,020
M76T	0.71						0,035	0,040	0,020
K76T	0,71- 0,82						0,030	0,035	
Э76Т	0,02				0,023		0,025	0,030	
M76							0,035	0,040	
К76							0,030	0,035	0,025
Э76							0,025	0,030	

Примечания:

В марках стали буквы M, K, Θ – обозначают способ выплавки стали, цифры – среднюю массовую долю углерода, Буквы Φ , C, X, T – легирование стали ванадием, кремнием, хромом и титаном соответственно.

Допускается массовая доля остаточных элементов – хрома (В рельсах категории Т1, Т2, Н), никеля и меди не более 0,15% каждого, при суммарной массовой доле не более 0,40%. Химический состав для Р65К должен соответствовать указанному, за исключением массовой доли углерода, которая должна быть 0,83 – 0,87%. При этом цифры в марке стали заменяют на 85.

Как видите, дополнительно указаны еще два компонента — титан и хром. Мы не стали их подробно описывать выше, так как они присутствуют далеко не всегда, но первый из них является полезной примесью, чей положительный эффект сводится к повышению прочности, а второй — остаточным элементом. Также стоит обратить внимание на наличие алюминия, помогающего снизить вес без ухудшения других качественных показателей.

Применение и марки рельсовой стали

Основная сфера использования металла (что ясно из его названия) – выпуск прокатных изделий для укладки ВСП.

Теперь рассмотрим самые востребованные вариации сплавов:

76 — самая популярная. Из нее изготавливаются профили серий Р50 и Р65, составляющие 3/4 всех опорных конструкций ширококолейных ЖД-полотен.

 76Φ — уже усиленная ванадием, с повышенным ресурсом. Поэтому используется для производства проката, который в дальнейшем будет укладываться в линии для высокоскоростного движения локомотивов и другого быстрого транспорта.

K63 — легирована никелем (до 0,3%), отличается впечатляющей твердостью и лучшей коррозионной стойкостью. Из нее выполняются крановые рельсы, марка стали позволяет выдерживать нагрузки, в других случаях ставшие критическими.

 $K63\Phi-c$ добавками вольфрама, а значит с еще более высокой циклической прочностью.

M54 — обогащенная марганцем и за счет этого обладающая хорошей вязкостью. Нашла свое применение при выпуске накладок для мест стыка и стрелочных переводов.

M68 – актуальная при производстве специфических элементов верхнего строения пути.

Необходимость механических свойств в различных сочетаниях и определила такое разнообразие вариантов. Добавьте сюда сравнительно малый вес и низкую стоимость, и получите очень практичную конструкцию для строительства транспортных линий и узлов развязки (таблица 2).

Таблица 2- Марка рельсовой стали и ее назначение

Материал	Применение, другое обозначение (если есть)
63	для изготовления крановых рельсов специальных профилей типов КР70, КР80, КР100, КР120, КР140, применяемых для путей грузо-
	подъемных кранов.
76	Изготовление железнодорожных рельсов типов РП50, РП65 и РП75
	для путей промышленного железнодорожного транспорта широкой
	колеи. Сталь углеродистая
76T	Изготовление железнодорожных рельсов типов РП50, РП65 и РП75
	для путей промышленного железнодорожного транспорта широкой
	колеи. Сталь углеродистая микролегированная

Продолжение таблицы 2

Материал	Применение, другое обозначение (если есть)
76Ф	Изготовление железнодорожных рельсов типов РП50, РП65 и РП75
104	для путей промышленного железнодорожного транспорта широкой
	колеи. Сталь углеродистая микролегированная
76Ц	Изготовление железнодорожных рельсов типов РП50, РП65 и РП75
/оц	для путей промышленного железнодорожного транспорта широкой
	колеи. Сталь углеродистая микролегированная
A1	
Al	для изготовления прокатанных и кованых заготовок квадратного или
	круглого сечения предназначенных для производства осей локомоти-
	вов, электропоездов, дизель- и электропоездов, вагонов железных
	дорог и вагонов метрополитена железных дорог Если по согла-
	шению требуется сталь без термообработки (прокатка или ковка), то
	применяют обозначение стали А0 вместо А1.
A2	для изготовления прокатанных и кованых заготовок квадратного или
	круглого сечения предназначенных для производства осей локомоти-
	вов, электропоездов, дизель- и электропоездов, вагонов железных
	дорог и вагонов метрополитена железных дорог.
A3	для изготовления прокатанных и кованых заготовок квадратного или
	круглого сечения предназначенных для производства осей локомоти-
	вов, электропоездов, дизель- и электропоездов, вагонов железных
	дорог и вагонов метрополитена железных дорог.
A4	для изготовления прокатанных и кованых заготовок квадратного или
	круглого сечения предназначенных для производства осей локомоти-
	вов, электропоездов, дизель- и электропоездов, вагонов железных
	дорог и вагонов метрополитена железных дорог.
К63	для изготовления крановых рельсов
К76	для изготовления железнодорожных рельсов типа Р75, Р65, Р50.
	Способ выплавки - конвертерная сталь
К76Т	для изготовления железнодорожных рельсов типа Р75, Р65, Р50.
	Способ выплавки - конвертерная сталь
К76Ф	для изготовления железнодорожных рельсов типа Р75, Р65, Р50.
	Способ выплавки - конвертерная сталь
К78ХСФ	для изготовления железнодорожных рельсов типа Р75, Р65, Р50.
	Способ выплавки - конвертерная сталь
К86Ф	для изготовления железнодорожных рельсов типа Р75, Р65, Р50.
	Способ выплавки - конвертерная сталь
M54	для изготовления двухголовых объемно-закаленных в масле накла-
1,10	док, применяемых для стыковки соединений рельсов железных дорог
	широкой колеи
M68	Для изготовления рельсов контррельсовых типов РК75, РК65, РК50,
14100	применяемых в конструкциях верхнего строения пути с железнодо-
	рожными рельсами широкой колеи. Способ выплавки мартенов-
	ский
M73B	Для изготовления рельсов остряковых типов OP75, OP65, OP50, при-
1VI / JD	
	меняемых в конструкциях верхнего строения железнодорожного пу-
M72T	ти. Способ выплавки мартеновский
M73T	Для изготовления рельсов остряковых типов ОР75, ОР65, ОР50, при-
	меняемых в конструкциях верхнего строения железнодорожного пу-
	ти. Способ выплавки мартеновский

Окончание таблицы 2

Материал	Применение, другое обозначение (если есть)
М73Ц	Для изготовления рельсов остряковых типов ОР75, ОР65, ОР50, при-
	меняемых в конструкциях верхнего строения железнодорожного пу-
	ти. Способ выплавки мартеновский
M74	для изготовления железнодорожных рельсов типа Р50
M74T	для изготовления железнодорожных рельсов типа Р50
М74Ц	для изготовления железнодорожных рельсов типа Р50
M76	для изготовления железнодорожных рельсов типа Р75, Р65, Р50.
	Способ выплавки - мартеновская сталь
M76B	для изготовления железнодорожных рельсов типа Р75, Р65
M76BT	для изготовления железнодорожных рельсов типа Р75, Р65
M76T	для изготовления железнодорожных рельсов типа Р75, Р65, Р50.
	Способ выплавки - мартеновская сталь
М76Ф	для изготовления железнодорожных рельсов типа Р75, Р65, Р50.
	Способ выплавки - мартеновская сталь
М76Ц	для изготовления железнодорожных рельсов типа Р75, Р65
H50	для изготовления рельсов, предназначенных для укладки на желез-
	ных дорогах узкой колеи.
OC	для изготовления прокатанных заготовок квадратного или круглого
	сечения предназначенных для производства осей локомотивов, элек-
	тропоездов, дизель- и электропоездов, вагонов железных дорог и ва-
	гонов метрополитена железных дорог колеи 1520 мм
ПТ70	для изготовления рельсов, предназначенных для укладки на желез-
	ных дорогах узкой колеи.
	Изготовление бандажей для подвижного состава трамвая . В ГОСТ
СтальГОСТ5257-	5257-98 приведен хим. состав стали, но не указано ее обозначение
98	
T60	для изготовления рельсов, предназначенных для укладки на желез-
	ных дорогах узкой колеи.
Э76	для изготовления железнодорожных рельсов типа Р75, Р65, Р50.
	Способ выплавки - электросталь
Э76Т	для изготовления железнодорожных рельсов типа Р75, Р65, Р50.
	Способ выплавки - электросталь
Э76Ф	для изготовления железнодорожных рельсов типа Р75, Р65, Р50.
	Способ выплавки - электросталь
Э78ХСФ	для изготовления железнодорожных рельсов типа Р75, Р65, Р50.
	Способ выплавки - электросталь
Э86Ф	для изготовления железнодорожных рельсов типа Р75, Р65, Р50.
	Способ выплавки - электросталь

Выводы:

- 1. Рельсовые стали равномерно распределяют испытываемые нагрузки по всей длине полотна;
- 2. Рельсовые стали обеспечивают надежную поверхность для колес транспорта, помогая тому развивать и поддерживать высокую скорость передвижения;
- 3. Для железнодорожного полотна марка стали это 76 и 76Ф, с высоким содержанием углерода и с добавками ванадия (во втором случае).

Выплавляется в конвертерных и дуговых печах, с раскислением ферросилицием и алюминием, с последующей дефосфорацией и обновлением шлака, с вакуумной и термической обработкой. При таком подходе готовый прокат отличается высокой степенью чистоты и низкой склонностью к появлению изъянов.

Библиографический список

- 1. Гольдштейн М.И. Специальные стали: учебник для вузов [Текст] / М.И. Гольдштейн, Грачев С.В., Векслер Ю.Г.- М.: Металлургия, 1985.- 408 с.
- 2. Падерин С.Н. Теория и расчеты металлургических систем и процессов [Текст]./ С.Н. Падерин, В.В. Филиппов.- М.: МИСиС, 2002.- 334 с.
- 3. Кудрин, В.А. Теория и технология производства стали: учебник для вузов [Текст] / Ю.В. Кряковский, А.Г. Шалимов. М.: «Мир», ООО «Издательство АСТ», 2003. 528 с.
- 4. Дефекты и качество рельсовой стали: Справ. изд./ В.В. Павлов, М.В. Темлянцев, Л.В. Корнева и др. М.: Теплотехник, 2006 218 с.: ил.

УДК 669.715.017.16

ВОЗДЕЙСТВИЕ МОДИФИЦИРОВАНИЯ НА СТРУКТУРУ И ФИЗИЧЕСКИЕ СВОЙСТВА ЗАЭВТЕКТИЧЕСКИХ СИЛУМИНОВ

Полунин А.М., Ломиворотов Н.П., Юркина М.С. Научный руководитель: д-р техн. наук, профессор Попова М.В.

Сибирский государственный индустриальный университет, г. Новокузнецк, e-mail: alekcandr2025@mail.ru

Приведены результаты исследований влияния модифицирования сульфатом меди на микроструктуру, плотность и тепловое расширение заэвтектических силуминов с $20\div40$ % кремния. Для изученных сплавов была проведена продувка расплава парами 3-7 %-ного водного раствора $CuSO_4$ в течение 5-15 минут при температуре $800-1100~^{0}C$ с последующей кристаллизацией в алюминиевый кокиль и с имитацией жидкой штамповки.

Ключевые слова: алюминий, кремний, модифицирование, кристаллизация, структура, температурный коэффициент линейного расширения, плотность.

Тепловое расширение и плотность являются важными свойствами для изделий таких отраслей промышленности, как специальное приборостроение и двигателестроение. Основой легких сплавов с низким температурным коэффициентом линейного расширения (ТКЛР, α) традиционно является система алюминий–кремний, причем кремния необходимо вводить не менее 20 % [1-4].

Обязательной технологической операцией при выплавке силуминов