МЕЖДУНАРОДНЫЙ ЦЕНТР НАУЧНОГО СОТРУДНИЧЕСТВА «НАУКА И ПРОСВЕЩЕНИЕ»

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ:

АКТУАЛЬНЫЕ ВОПРОСЫ, ДОСТИЖЕНИЯ И ИННОВАЦИИ

СБОРНИК СТАТЕЙ Х МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ, СОСТОЯВШЕЙСЯ 27 ОКТЯБРЯ 2017 Г. В Г. ПЕНЗА

> ПЕНЗА МЦНС «НАУКА И ПРОСВЕЩЕНИЕ» 2017

УДК 001.1 ББК 60 С56

Ответственный редактор: Гуляев Герман Юрьевич, кандидат экономических наук

C56

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ: АКТУАЛЬНЫЕ ВОПРОСЫ, ДОСТИЖЕНИЯ И ИННОВАЦИИ: сборник статей X Международной научно-практической конференции / Под общ. ред. Г.Ю. Гуляева — Пенза: МЦНС «Наука и Просвещение». — 2017. — 186 с.

ISBN 978-5-907012-31-8

Настоящий сборник составлен по материалам X Международной научно-практической конференции «СОВРЕМЕННЫЕ ТЕХНОЛОГИИ: АКТУАЛЬНЫЕ ВОПРОСЫ, ДОСТИЖЕНИЯ И ИННОВАЦИИ», состоявшейся 27 октября 2017 г. в г. Пенза. В сборнике научных трудов рассматриваются современные проблемы науки и практики применения результатов научных исследований.

Сборник предназначен для научных работников, преподавателей, аспирантов, магистрантов, студентов с целью использования в научной работе и учебной деятельности.

Ответственность за аутентичность и точность цитат, имен, названий и иных сведений, а также за соблюдение законодательства об интеллектуальной собственности несут авторы публикуемых материалов.

Полные тексты статей в открытом доступе размещены в Научной электронной библиотеке **Elibrary.ru** и зарегистрированы в наукометрической базе **РИНЦ** в соответствии с Договором №1096-04/2016К от 26.04.2016 г.

УДК 001.1 ББК 60

> © МЦНС «Наука и Просвещение» (ИП Гуляев Г.Ю.), 2017 © Коллектив авторов, 2017

ISBN 978-5-907012-31-8

СОДЕРЖАНИЕ

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ	10
ПРОФИЛАКТИЧЕСКИЕ ВОССТАНОВЛЕНИЯ И СТРАТЕГИИ ВОССТАНОВЛЕНИЯ ПРИ ЭКСПЛУАТАЦИИ ИНФОРМАЦИОННО-ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ ВАЙНШТЕЙН ВИТАЛИЙ ИСААКОВИЧ, СОМОВ ДЕНИС ЮРЬЕВИЧ, ИЕВЛЕВА АЛЕНА ВИКТОРОВНА	11
КОМПЬЮТЕРНАЯ РЕАЛИЗАЦИЯ АЛГОРИТМА РЕШЕНИЯ БАЛАНСОВОЙ МОДЕЛИ И ЕЁ ПРИЛОЖЕНИЯ АСХАКОВА ФАТИМА ХЫЗЫРОВНА	15
ВУФ-ПЕРЕХОДЫ ВБЛИЗИ РЕЗОНАНСНЫХ ЛИНИЙ $KR(4^1S_0 o 5^3P_1)$ И $KR(4^1S_0 o 5^1P_1)$, ИНДУЦИРОВАННЫЕ СТОЛКНОВЕНИЯМИ С АТОМАМИ НЕ(1 1S_0) АЛЕКСЕЕВА ОЛЬГА СЕРГЕЕВНА, ЗАГРЕБИН АНДРЕЙ ЛАВРЕНТЬЕВИЧ,	
ПЕДНЕВ МИХАИЛ ГЕОРГИЕВИЧ, РЫБАКИНА ЕЛЕНА АЛЬБЕРТОВНА	19
ГЕХНИЧЕСКИЕ НАУКИ	23
ГЕНДЕНЦИЯ РАЗВИТИЯ ЭЛЕКТРОННЫХ КНИГ И ЭЛЕКТРОННЫХ ЧИТАТЕЛЕЙ МАКАРКИН ДМИТРИЙ АЛЕКСАНДРОВИЧ, ПОТАШОВ ВЯЧЕСЛАВ ЕВГЕНЬЕВИЧ	24
ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ ТЕХНОЛОГИИ ИНТЕРНЕТА ВЕЩЕЙ БАГАЙ ДМИТРИЙ ИГОРЕВИЧ,	27
УСОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ КВАСА С ПРИМЕНЕНИЕМ РАСТИТЕЛЬНОГО ЭКСТРАКТЛ НА ОСНОВЕ ИВАН-ЧАЯ ГИНИКАШВИЛИ НАТЕЛА АРЧИЛОВНА	
КОНЦЕПЦИЯ НЕОБХОДИМОСТИ АВТОМАТИЗАЦИИ ВЫПОЛНЕНИЯ ЗАДАЧ КОНФИГУРИРОВАНИ! КОМПЬЮТЕРНЫХ СЕТЕЙ ЕРМАКОВ Д.В.	
ПРОБЛЕМЫ ПРИМЕНЕНИЯ СОЛНЕЧНЫХ ПАНЕЛЕЙ ДЛЯ СИСТЕМ АВТОНОМНОГО ПИТАНИЯ ШИБАНОВ ЕВГЕНИЙ АНДРЕЕВИЧ, СИМАКОВ АЛЕКСАНДР ВЛАДИМИРОВИЧ	
ВЛИЯНИЕ ОТЖИГА И НОРМАЛИЗАЦИИ НА УДЕЛЬНОЕ ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ ТЕРМОЦИКЛИЧЕСКИ ДЕФОРМИРОВАННОЙ СТАЛИ СТЗПС ПРУДНИКОВ АЛЕКСАНДР НИКОЛАЕВИЧ, ПРУДНИКОВ ВЛАДИМИР АЛЕКСАНДРОВИЧ	40
НЕЙРОСЕТЬ КАК ПОМОЩНИК АВТОМАТИЗАЦИИ ИГРОВОЙ АНИМАЦИИ ЗУБРИЧЕВ НИКИТА ВЯЧЕСЛАВОВИЧ, АЩЕПКОВ ФЕДОР АЛЕКСАНДРОВИЧ	
АВТОМАТИЗИРОВАННАЯ СЕТЕВАЯ СИСТЕМА ФОРМИРОВАНИЯ ПОЛИГОНА БОЛЬШИХ	
ОБУЧАЮЩИХ ДАННЫХ АНАНЧЕНКО ИГОРЬ ВИКТОРОВИЧ, ГЛУМОВ ВЛАДИСЛАВ ЭДУАРДОВИЧ	47

УДК 621.768.011

ВЛИЯНИЕ ОТЖИГА И НОРМАЛИЗАЦИИ НА УДЕЛЬНОЕ ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ ТЕРМОЦИКЛИЧЕСКИ ДЕФОРМИРОВАННОЙ СТАЛИ СТЗПС

ПРУДНИКОВ АЛЕКСАНДР НИКОЛАЕВИЧ,

д. т. н., профессор

ПРУДНИКОВ ВЛАДИМИР АЛЕКСАНДРОВИЧ,

аспирант

ФГБОУ ВО «Сибирский Государственный Индустриальный Университет»,

Аннотация. Приведены результаты влияния термической обработки: нормализации и отпуска на удельное электрическое сопротивление листовой горячекатаной низкоуглеродистой стали Ст3пс, изготовленной с применением режима деформационной термоциклической обработки (ДТЦО). Показано, что Общий уровень снижения удельного электрического сопротивления горячекатаной стали за счет использования режима ДТЦО и последующей нормализации при 700 °C в течение 1 ч составляет более 12 %.

Ключевые слова: сталь, структура, термоциклическая прокатка, отжиг, нормализация, удельное электрическое сопротивление.

INFLUENCE OF ANNEALING AND NORMALIZATION ON SPECIFIC ELECTRICAL RESISTANCE OF THERMOCYCLICALLY DEFORMED STEEL Ct3nc

Prudnikov Alexander Nikolaevich, Prudnikov Vladimir Alexandrovich

Abstract: The results of the influence of heat treatment: normalization and tempering on the specific electrical resistance of the sheet hot-rolled low-carbon steel $C\tau 3\pi c$, made using the mode of deformation thermal cyclic treatment (DTCT) are given. It is shown that the overall level of reduction of the electrical resistivity of hot-rolled steel due to the use of the DTCT mode and subsequent normalization at 700 ° C for 1 hour is more than 12 %

Key words: steel, structure, thermo-cyclic rolling, annealing, normalization, specific electrical resistance.

Низкоуглеродистую сталь электротехническое материаловедение причислить к наиболее доступным и дешевым материалам, обладающим хорошими механическими характеристиками при разрыве. Однако ее использование сдерживается повышенным удельным электрическим сопротивлением по сравнению со сплавами меди и алюминия. Известно, что для структурно чувствительных свойств, в число которых наряду с механическими характеристиками входит удельное электрическое сопротивление, эффективно совместное воздействие температуры и деформации [1,2]. К таким воздействиям

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ

можно отнести деформационную термоциклическую обработку (ДТЦО), представляющую собой термоциклическую обработку, совмещенную с различными видами деформации в области низких или высоких температур. Такая комплексная обработка приводит к интенсификации диффузионных процессов, протекающих при заданных колебаниях температуры с приложением напряжений и деформаций, накоплению структурных изменений, происходящих в циклах и связанных с объемными эффектами фазовых превращений, разницей в теплофизических характеристиках фаз и др. В конечном итоге эти процессы позволяют сформировать оптимальную структуру и улучшить физические и механические свойства сталей, чугунов, алюминиевых сплавов и других материалов [3-6]. Резервом снижения удельного электрического сопротивления может служить последующая термическая обработка для получения более равновесной структуры с уменьшенным количеством кристаллографических дефектов и пониженным уровнем внутренних напряжений [7], в первую очередь нормализация и отжиг. Поэтому целью работы являлось исследование воздействия различных режимов нормализации и отжига на удельное сопротивление горячекатаной стали Ст3пс, изготовленной с применением ДТЦО.

В качестве материала исследования была взята низкоуглеродистая сталь обыкновенного качества Ст3пс, выплавленная на ОАО «НКМК» (г. Новокузнецк). Химический состав стали приведен в табл. 1

Химический состав обрабатываемой стали Ст3пс

Таблица 1

Manya ataru		Содержание элементов, % (вес.)								
IVIA	арка стали	С	Mn	Si	Р	S	Cr	Cu	Ni	
	Ст3пс	0.19	0.54	0.07	0.013	0.028	0.3	0.07	0.03	

Для прокатки листа из слитка вырезали сляб размером $165 \times 500 \times 1800$ мм. ДТЦО заключалась в термоциклической прокатке на листопрокатном стане 500 (ОАО «НКМК») в количестве 5 циклов. Один цикл прокатки заготовок включал, нагрев до 1300 °C, выдержка 2-2,5 ч, обжатие 10-15 % и охлаждение на воздухе до температуры ниже A_{r1} . Причем в 1-ом и 3-ем циклах охлаждение проводили до 500-550 °C, а в остальных циклах – до 50-100 °C. Толщина полосы по циклам изменялась следующим образом: $165 \rightarrow 140 \rightarrow 120 \rightarrow 110 \rightarrow 100 \rightarrow 90$ мм и далее до толщины листа 5 мм по промышленной технологии. Нормализацию и отжиг листовых образцов проводили в печах сопротивления типа СНОЛ. Для исследования микроструктуры стали использовали оптический микроскоп ЛабоМет-И1, а для измерения электрического сопротивления применяли двойной мост Томсона (NORMA M88). Образцы для измерения электрического сопротивления имели размеры $5 \times 5 \times 100$ мм. Погрешность метода измерения составляла $0,05\cdot10^{-8}$ Ом·м.

Известно [8,9], что указанный выше режим ДТЦО для стали Ст3пс приводит к измельчению структуры и уменьшению объемной доли перлита в горячекатаной стали и снижению величины удельного сопротивления на 3-5 %. Дальнейшим резервом уменьшения удельного электрического сопротивления может являться последующая термическая обработка, приводящая к получению в стали более равновесного структурного состояния по сравнению с деформированным. Поэтому было изучено влияния температуры нормализации и отжига на величину удельного сопротивления горячекатаной стали Ст3пс. Температура обработки менялась в интервале от 100 до 900 °C с шагом 100 °C и временем выдержки 1 ч. Результаты определения удельного сопротивления образцов из горячекатаной стали Ст3пс в нормализованном и отожженном состояниях приведены на рис. 1.

Установлено, что с увеличением температуры обработки для обоих режимов как нормализации, так и отжига величина удельного электрического сопротивления снижается до температуры 700°С. Причем у нормализованных образцов удельного электрическое сопротивление на 6 % ниже, чем у отожженных и его абсолютная величина составляет 15,22·10-8 Ом·м.

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ

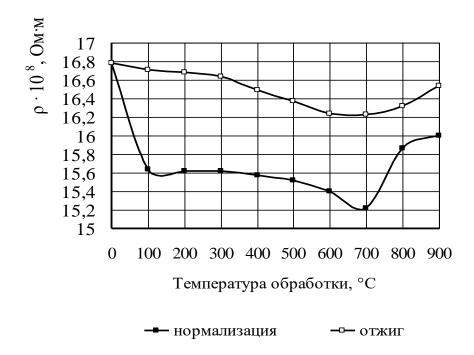


Рис 1. Влияние температуры отжига и нормализации на удельное электрическое сопротивление горячекатаной стали Ст3пс, изготовленной с применением ДТЦО

Увеличение удельного электрического сопротивления стали с повышением температуры нормализации и отжига до 900 °С может быть связано с коагуляцией при этих температурах цементита, находящегося в перлитной составляющей после ДТЦО в дисперсном виде. Дальнейшее увеличение времени нормализации при 700°С до 3, 5 и 10 ч не оказывает существенного влияния величину удельного электрического сопротивления горячекатаной стали, изготовленной с ДТЦО, хотя и сохраняет тенденцию к его снижению − 15,19, 15,17 и 15,03·10-8 Ом·м. Общий уровень снижения удельного электрического сопротивления горячекатаной стали за счет использования режима ДТЦО и последующей нормализации при 700 °С в течение 1-10 ч составляет в среднем 10-13 %.

Таким образом, использование в качестве последующей термической обработки нормализации позволяет снизить величину удельного электрического сопротивления горячекатаной Ст3пс, подвергнутой ДТЦО, не менее чем на 10 %. Совмещение ДТЦО с последующей нормализацией при 700 °С в течение 1 ч для горячекатаной стали Ст3пс снижает удельное электрическое сопротивление в среднем на 12 % по сравнению с промышленной технологией.

Список литературы

- 1. Федюкин В.К. Смагоринский М.Е. Термоциклическая обработка металлов и деталей машин. Л.: Машиностроение. Ленингр. отд., 1989. 255 с.
- 2. Prudnikov A.N. Deformable heatproof transeutectic silumin for pistons // Steel in Translation. 2009. T. 39. № 6. C.456-459.
- 3. Метс Ю.А., Смагоринский М.Е. Низкотемпературная деформационно-термоциклическая обработка / Порошковые, композиционные и текстурованные материалы: Труды ЛПИ. Л., 1986. № 417. С. 52-60.
- 4. Прудников А.Н. Комплексное воздействие отжигов и термоциклической ковки на структуру и свойства заэвтектических силуминов // Деформация и разрушение материалов. 2014. № 2. С. 14 20.
- 5. Prudnikov A.N. Production, structure and properties of engine pistons made from transeutectic deformable silumin // Steel in Translation. 2009. T. 39. № 5. C. 391-393.

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ

- 6. Прудников А.Н. Поршневые деформируемые заэвтектические силумины // Технология металлов. 2014. № 2. С. 8 11.
- 7. Лахтин Ю.М. Металловедение и термическая обработка металлов. М.: Металлургия, 1993. 448 с.
- 8. Прудников А.Н., Богонос Е.В., Прудников В.А. Воздействие термоциклической прокатки на структуру и удельное электрическое сопротивление листовой стали Ст3пс. / В сб.: Наука и молодежь: проблемы, поиски, решения. Новокузнецк, изд-во СибГИУ, 2015. С. 35-39.
- 9. Прудников А.Н., Прудников В.А. Воздействие термоциклической деформации и нормализации на механические свойства низкоуглеродистой стали // Актуальные вопросы технических наук в современных условиях: сб. науч. трудов III Межд. науч.-практ. конф.: С-Пб., ИЦРОН, 2017. –С. 44-47.

© А.Н. Прудников, В.А. Прудников, 2017

научное издание

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ: АКТУАЛЬНЫЕ ВОПРОСЫ, ДОСТИЖЕНИЯ И ИННОВАЦИИ

Сборник статей X Международной научно-практической конференции г. Пенза, 27 октября 2017 г. Под общей редакцией кандидата экономических наук Г.Ю. Гуляева Подписано в печать 29.10.2017. Формат $60 \times 84 \ 1/16$. Усл. печ. л. 27,7

МЦНС «Наука и Просвещение» 440062, г. Пенза, Проспект Строителей д. 88, оф. 10 www.naukaip.ru