Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет»

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ТЕХНИЧЕСКИЕ НАУКИ

ЧАСТЬ V

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых 16 - 18 мая 2017 г.

выпуск 21

Под общей редакцией профессора М.В. Темлянцева

Новокузнецк 2017

Редакционная коллегия:

д-р техн. наук, профессор М.В. Темлянцев, д-р техн. наук, профессор Г.В. Галевский, д-р техн. наук, доцент А.Г. Никитин, д-р техн. наук, профессор С.М. Кулаков, канд. техн. наук, доцент И.В.Камбалина

Н 340 Наука и молодежь: проблемы, поиски, решения: труды Всероссийской научной конференции студентов, аспирантов и молодых ученых / Сиб. гос. индустр. ун-т; под общ. ред. М.В. Темлянцева. — Новокузнецк: Изд. центр СибГИУ, 2017.— Вып. 21.— Ч. V. Технические науки.— 390 с., ил.—161, таб.—34.

Представлены труды Всероссийской научной конференции студентов, аспирантов и молодых ученых по результатам научно-исследовательских работ. Пятая часть сборника посвящена актуальным вопросам в области технических наук: теории механизмов, машиностроения и транспорта, новых информационных технологий и систем автоматизации управления, актуальным проблемам строительства, металлургическим процессам, технологиям, материалам и оборудованию.

Материалы сборника представляют интерес для научных и научнотехнических работников, преподавателей, аспирантов и студентов вузов.

ИССЛЕДОВАНИЕ ПО ПОЛУЧЕНИЮ ПЕНОСТЕКЛА КАК ЭФФЕКТИВНОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА

Беседин С.И.

Научные руководители: канд. техн. наук, профессор Панова В.Ф., канд. техн. наук, доцент Карпачева А.А.

Сибирский государственный индустриальный университет, г. Новокузнецк

В работе разработаны оптимальный состав шихты и технология получения пеностекольных блоков, приведен подбор оборудования, описаны основные свойства и характеристики готовых изделий.

Ключевые слова: стеклобой, пеностекло, известняк, технология, средняя плотность, теплопроводность, теплоизоляционный.

Пеностекло как и любой материал имеет свои достоинства и недостатки. Данный материал отличается долговечностью и прочностью по сравнению с традиционными теплоизоляционными изделиями. Отсутствие в составе органических соединений обеспечивает стойкость к биологическим воздействиям. Материал стоек к воздействию влаги и химически агрессивным средам. И наконец, пеностекло является экологически чистым теплоизоляционным материалом. К недостаткам можно отнести высокую себестоимость, малую паропроводимость, хрупкость [1].

Цель работы: разработать состав и технологию получения пеностекла и изделий из него. Изучить свойства сырья и готовых изделий.

Основным сырьем заложен стеклобой, как бытовой отход, так и отход стеклопроизводства и стекольных изделий. Стеклобой должен быть не загрязненный, допускается небольшое содержание примесей (до 2 %). В качестве порообразующего компонента предложено использовать известняк Гурьевского месторождения (таблица 1).

Таблица 1 – Химический состав известняка Гурьевского месторождения

Состав известняка, %				
CaCO3	MgCO3	H2O	R2O3+SiO2	Σ
93,5	0,5	3	3	100

При подборке *состава шихты* определено оптимальное соотношение составляющих: стеклобой: известняк = 98%: 2%. Данный состав обеспечивает образование максимального количества пор до 85...90%. Установлено, что поры замкнутые и равномерно распределенные (рисунок 1). Это обеспечивает повышенную теплоизоляцию.

Поры размером 1...4мм; Пористость 85 %

Рисунок 1- Пеностекло – ячеистая структура из замкнутых пор

Технология производства пеностекольных блоков включает в себя предварительное дробление компонентов шихты в щековой дробилке СМД-116 до фракции 0,2мм, которые транспортируется по конвейеру в бункера для стеклобоя и известняка [2]. Отдозированные весовыми дозаторами материалы поступают по скребковому конвейеру в шаровую мельницу СМ-456 для измельчения до фракции 0...1мм, а затем транспортируются в вибромельницу СВМ-45\110 где происходит домол до удельной поверхности 250м2/кг (2500см2/г). Готовая шихта транспортируется в расходный бункер. Из бункера шихта равномерным слоем в 50мм укладывается в передвижные формы размером 1600х500х120мм расположенные на вагонетках, которые отправляются в печь с помощью пневмотолкателя. Технологическая схема производства представлена на рисунке 2. В печи пеностекло проходит 3 стадии термообработки: вспенивание при температуре 850 °C, резкое охлаждение до 610 °C, отжиг с медленным охлаждением до температуры 50 °C. Вышедшие формы с пеностеклом разрезается на блоки нужного размера на форматном станке. Отходы разпилки измельчаются в дробилке и отправляются в бункер мелкой поризованой крошки, которая отпускается потребителю как теплоизоляционная засыпка.

Полученные изделия с размерами 475х400х120 мм и массой 4,56 кг имеют следующие характеристики: среднюю плотность(γ) – 200 кг/м3, теплопроводность(λ) – 0,04...0,08 Bt/(м·C) при+10 0 C, прочность при сжатии –

2,5 Мпа(Rсж), пористость 85 %. К теплоизоляционным изделиям относят изделия с $\gamma < 600$ кг/м3 и $\lambda < 0,175$ Вт/(м·С). То есть в данном случае получен высокоэфективный теплоизоляционный строительный материал, обладающий достаточной прочностью необходимой для монтажа.

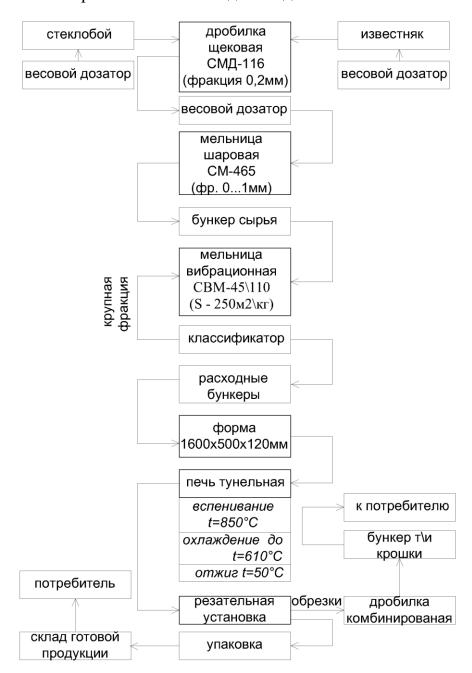


Рисунок 2 - Технологическая схема получения блоков из пеностекла

Bыводы: Оптимизирован состав шихты для получения пеностекла с содержанием стеклобоя 98 % и известняка 2 %. Основные операции в технологии получения пеностекла являются: вспенивание при температуре 840 0 C, резкое охлаждение до 610 0 C и отжиг с охлаждением до 50 0 C. Полученный массив разрезается на блоки заданных размеров. Разработанный материал относится к высокоэффективным теплоизоляционным материалам. Основ-

ные характеристики: Rcж = 2,5Мпа; λ = 0,04...0,08 Bт/(м·C) при+10 0 C; γ = 200 кг/м3; пористость 85 %; размеры 475х400х120мм; масса 4,56кг.

Статья оформлена по методическим рекомендациям [3].

Библиографический список

- 1. Панова В.Ф. Техногенные продукты как сырье для стройиндустрии: монография / В.Ф. Панова; Сиб. гос. индустр. ун-т. Новокузнецк: СибГИУ, 2009 289 с.
- 2. Столбоушкин А.Ю. Технология стеновых материалов и изделий: Метод.указ. по курсовому проектированию / А.Ю. Столбоушкин, С.Ж. Сайбулатов. Новокузнецк: СибГИУ, 2002. 41 с., ил
- 3. Магистерский семинар. метод. указ. / Сиб. гос. индустр. ун-т.; сост.: В.Ф. Панова, Ф.Н. Рыжков, И.В. Камбалина Новокузнецк: изд. Центр СибГИУ, 2015 15 с.

УДК: 666.972.12: [658.567.1: 669.1]

РАЗРАБОТКА СОСТАВА И ТЕХНОЛОГИИ ДЛЯ ПОЛУЧЕНИЯ СЕЙСМОСТОЙКИХ ФУНДАМЕНТОВ

Дывак В.В.

Научный руководитель: канд. техн. наук, профессор Панова В.Ф.

Сибирский государственный индустриальный университет, г. Новокузнецк

В статье приведены основные свойствасырьевых материалов для получения высокопрочного бетона. Даны результаты расчета состава бетона с применением вторичных минеральных ресурсов. В качестве крупного заполнителя рекомендовандробленый доменный шлак, мелкого, состоящего из отработанной формовочной смеси(ОФС) и гранулированного молотого шлака. Разработана технологическая схема производства сейсмостойких фундаментов, работающих по принципу «неваляшки».

Ключевые слова: бетон, сейсмостойкость, фундамент, доменный шлак, отработанная формовочная смесь (ОФС), расчет, состав, свойства, прочность, марка, шлак.

В связи с высокой сейсмической активностью в Кемеровской области требуется повышение прочности возводимых сооружений и конструкций. В качестве фундамента предлагается использовать кинематическую опору, по форме напоминающую игрушку неваляшку (рисунок 1). Фундаменты можно применитьпод колоны при строительстве жилых сейсмостойких зданий. Основанием опоры служит сферическая поверхность.

Раецкии А.Д., Шлянин С.А. Разработка модуля формирования отзыва на работу обучающегося в системе «Moodle»	110
Билюченко С.С. Оптимизация потребления молочных продуктов населением	113
III. АКТУАЛЬНЫЕ ПРОБЛЕМЫ СТРОИТЕЛЬСТВА	117
Трофимов В.А. Исследование по получению керамзитобетона с применением вторичных минеральных ресурсов (ВМР)	117
Беседин С.И. Исследование по получению пеностекла как эффективного теплоизоляционного материала.	120
Дывак В.В. Разработка состава и технологии для получения сейсмостойких фундаментов.	123
Калинич И.В. Аэродинамическое влияние ветра на галереи транспортировки влажных горячих материалов.	126
Щеглеев И.А. Городское газообразное топливо	128
Печенин С.И. Исследование работы угольных водогрейных котлов малой производительности	130
Разливин Д.А. Расчет ребристо-кольцевого купола в программном комплексе ЛИРА-САПР.	132
Истерин Е.В. Повреждения металлических конструкций	139
Костромина Е.В. Особенности проектирования лесопильно-раскроечного цеха	142
Курочкин Н.М. Экспертиза проектно-сметной документации	145
Ефимов А.А. Формирование договорной цены в строительстве	149
Нечаев А.В. Трешины в строительных конструкциях	151

Научное издание

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ТЕХНИЧЕСКИЕ Е НАУКИ

Часть V

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых

Выпуск 21

Под общей редакцией М.В. Темлянцева

Технический редактор Г.А. Морина

Компьютерная верстка Н.В. Ознобихина

Подписано в печать 21.11.2017 г. Формат бумаги 60х84 1/16. Бумага писчая. Печать офсетная. Усл. печ. л.22,8 Уч.-изд. л. 25,2. Тираж 300 экз. Заказ № 593

Сибирский государственный индустриальный университет 654007, г. Новокузнецк, ул. Кирова, 42 Издательский центр СибГИУ