Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет»

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ТЕХНИЧЕСКИЕ НАУКИ

ВЫПУСК 26

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых 17 – 18 мая 2022 г.

ЧАСТЬ V

Под общей редакцией профессора С.В. Коновалова

Новокузнецк 2022

Редакционная коллегия:

д-р техн. наук, профессор Коновалов С.В., д-р техн. наук, профессор Кулаков С.М., канд. техн. наук, доцент Алешина Е.А., канд. техн. наук, доцент Чаплыгин В.В. канд. техн. наук, доцент Риб С.В. канд. техн. наук, доцент Шевченко Р.А.

H 340

Наука и молодежь: проблемы, поиски, решения: труды Всероссийской научной конференции студентов, аспирантов и молодых ученых, 17–18 мая 2022 г. Выпуск 26. Часть V. Технические науки / Министерство науки и высшего образования Российской Федерации, Сибирский государственный индустриальный университет; под общ. ред. С.В. Коновалова – Новокузнецк; Издательский центр СибГИУ, 2022. – 446 с.: ил.

ISSN 2500-3364

Представлены труды Всероссийской научной конференции студентов, аспирантов и молодых ученых по результатам научно-исследовательских работ. Пятая часть сборника посвящена актуальным вопросам в области новых информационных технологий и систем автоматизации управления, строительства, перспективных технологий разработки месторождений полезных ископаемых, металлургических процессов, технологий, материалов и оборудования

Материалы сборника представляют интерес для научных и научнотехнических работников, преподавателей, аспирантов и студентов вузов.

- 3. Грицык В. И., Жинкин Г. Н. и др. Строительство железных дорог / Под ред. В. И. Грицыка М.: УМК МПС, 1999. 384 с.
- 4. Пособие строительному мастеру и производителю работ по сооружению земляного полотна / В. П. Чернавский, М. А. Шубин и др.; Под ред. В. П. Чернавского. М.: Транспорт, 1977. 265 с.

УДК 691.328.1:69.07

ОПТИМИЗАЦИЯ КОНСТРУКТИВНОГО РЕШЕНИЯ ЖИЛОГО ДОМА В Г. ТОМСКЕ

Синкина К.В.

Научный руководитель: канд. техн. наук, доцент Платонова С.В.

Сибирский государственный индустриальный университет, г. Новокузнецк, e-mail: butova.xen@yandex.ru

В данной статье рассматривается выбор наиболее оптимального конструктивного решения плиты перекрытия девятиэтажного панельного жилого дома.

Ключевые слова: плита перекрытия, приведенные затраты, арматура.

Плита перекрытия — это железобетонное изделие, применяющееся в качестве основного несущего элемента каркаса здания как жилого, так и общественного назначения. В основном состоит из арматуры и бетона.

В первую очередь было произведено сравнение экономической эффективности по двум вариантам:

- 1) сплошная плита перекрытия;
- 2) плита перекрытия с круглыми пустотами.

В результате расчета наиболее целесообразным, с точки зрения экономики, в принятых условиях является вариант 1 – сплошная плита перекрытия и экономическая эффективность по сравнению со 2 вариантом составляет 0.12~%.

Вторым этапом оптимизации было произведено сравнение двух вариантов армирования (арматура A400 и A500) с помощью двух видов расчета:

- расчет плиты перекрытия по типу плиты, опертой по контуру;
- расчет плиты перекрытия по типу балки на двух опорах.

Представим результаты расчетов в виде диаграмм и сравним по некоторым показателям.

Согласно расчета плиты перекрытия по типу плиты, опертой по контуру для арматуры A400 и A500 — несмотря на показатели моментов инерции приведенного сечения, рассмотренные для сравнения, арматура A500 дает меньшие значения, однако по показателям трещиностойкости и прогибов арматура A400 является наиболее оптимальным вариантом, который и рекомендуется для дальнейшего применения.

Расчет плиты перекрытия по типу плиты, опертой по контуру

Моменты инерции приведенного сечения 1081039906 1046770210 1033319158 1048064765 1026392282 1027987603 1red, мм4 1red при продолжительном действий нагрузки, мм4 А 400 А 500

Расчет плиты перекрытия по типу балки на двух опорах

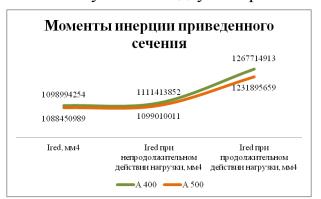
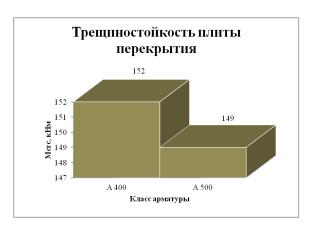



Рисунок 1 – График изменения моментов инерции приведенного сечения

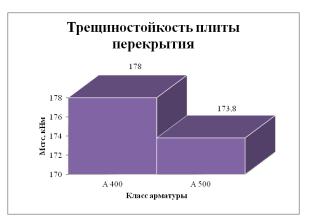
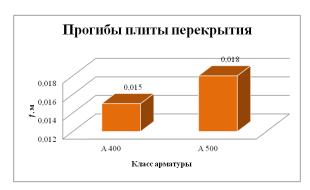



Рисунок 2 — Сравнение трещиностойкости плиты перекрытия в зависимости от класса арматуры

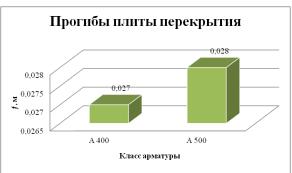


Рисунок 3 — Сравнение прогибов плиты перекрытия в зависимости от класса арматуры

Так же был произведен расчет плиты как балки на двух опорах для арматуры A400 и A500 — по результатам которого арматура A500 имеет меньшие показатели моментов инерции, чем арматура A400, но большие прогибы и меньшую трещиностойкость, в результате чего к дальнейшему применению рекомендуется арматура A400.

При проведении данных расчетов, в обоих вариациях, показатели прогиба и трещиностойкости не превысили нормативных значений.

Проведем сравнительный анализ двух вариантов расчета для арматуры A400.

Рисунок 4 — График изменения моментов инерции приведенного сечения в зависимости от типа расчета

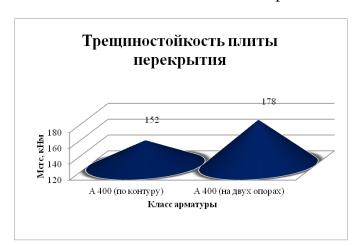


Рисунок 5 — Сравнение трещиностойкости плиты перекрытия в зависимости от вида расчета

Рисунок 6 — Сравнение прогибов плиты перекрытия в зависимости от вида расчета

Исходя из представленных данных следует, что:

- момент инерции для варианта расчета плиты, опертой по контуру принимает меньшие значения;
- показатели трещиностойкости плиты, как балки на двух опорах, выше, чем у альтернативного варианта решения;
- прогибы плиты перекрытия, как плиты опертой по контуру, ниже, чем плиты, рассчитанной как балка на двух опорах.

Оптимальным для дальнейшего применения следует принять вариант расчета плиты, опертой по контуру, в котором, в свою очередь, принимается меньший диаметр арматуры, что также является наиболее экономически эффективным решением.

Библиографический список

- 1. СП 376.1325800.2017. Жилые здания и помещения для временного проживания. Правила проектирования [Электронный ресурс]. Введ. 02.06.2018. Москва: ТК 465 «Строительство», 2017 // Техэксперт: информационно-справочная система. Электронные данные. Москва, 2019. Режим доступа: компьютерная сеть СибГИУ.
- 2. СП 20.13330.2016 Нагрузки и воздействия [Электронный ресурс]. Введ. 04.06.2017. Москва: ТК 465 «Строительство», 2016 // Техэксперт: информационно-справочная система. Электронные данные. Москва, 2019. Режим доступа: компьютерная сеть СибГИУ.
- 3. СП 356.1325800.2017. Конструкции каркасные железобетонные сборные многоэтажных зданий. Правила проектирования [Электронный ресурс]. Введ. 14.06.2018. Москва: ТК 465 «Строительство», 2017 // Техэксперт: информационно-справочная система. Электронные данные. Москва, 2019. Режим доступа: компьютерная сеть СибГИУ.
- 4. А.Б. Голышев. Проектирование железобетонных конструкций [Текст] : справочное пособие / А.Б. Голышев [и др.] Киев : Будівельник, 1990 / 1985. 544 с.
- 5. Кувалдин А.Н. Примеры расчета железобетонных конструкций зданий [Текст] / А.Н. Кувалдин, Г.С. Клевцова. 2-е изд. Москва : Стройиздат, 1979. 412 с.
- 6. Гаевой А.Ф. Курсовое и дипломное проектирование промышленных и гражданских зданий [Текст] : учебное пособие / А.Ф. Гаевой, С.А. Усик Ленинград : Стройиздат, 1987. 264 с.

ДРЕВЕСИНА – ПЕРСПЕКТИВНЫЙ МАТЕРИАЛ ДЛЯ СТРОИТЕЛЬСТВА <i>Канке Ю.Н</i>	117
ОСОБЕННОСТИ ГОРОДСКОЙ ЗАСТРОЙКИ Кастырина А.И.	122
РАСЧЕТ СЕГМЕНТНОЙ ФЕРМЫ	122
Копытова Е.Д	126
ЗАВОДСКИЕ МОДУЛИ ДЛЯ СБОРНЫХ ЗДАНИЙ <i>Ладутько М.Д., Прокаев Д.А.</i>	130
АДГЕЗИЯ АРМАТУРЫ С БЕТОНОМ <i>Мешкова А.И., Платонов А.В.</i>	133
ЖЕЛЕЗОБЕТОННЫЕ ПАНЕЛИ Мешкова А.И., Платонов А.В.	136
КОНСОЛЬНЫЕ КОНСТРУКЦИИ В СТРОИТЕЛЬСТВЕ <i>Мешкова А.И</i>	139
ЦВЕТ В АРХИТЕКТУРЕ <i>Митришкина А.А</i>	145
ДИЗАЙН В АРХИТЕКТУРЕ Пивоварова А.С	149
МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ В СТРОИТЕЛЬСТВЕ УНИКАЛЬНЫХ ЗДАНИЙ <i>Сагитова В.С., Платонов А.В., Прокаев Д.А.</i>	152
ИСПОЛЬЗОВАНИЕ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В СТРОИТЕЛЬСТВЕ Чапайкин А.С., Платонов А.В.	
ИСПЫТАНИЕ ТЕХНОГЕННЫХ ОТХОДОВ КАК ЗАПОЛНИТЕЛЕЙ Тимофеева А.В.	
ИССЛЕДОВАНИЕ ОСНОВНЫХ СВОЙСТВ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИХ МАРКИРОВКА Кузнецов С.В.	
ВЫБОР ОПТИМАЛЬНОЙ КОНСТРУКЦИИ ПОКРЫТИЙ И КАРКАСА БОЛЬШЕПРОЛЕТНЫХ СООРУЖЕНИЙ Самусенко Э.Э., Сагитова В.С., Белозерова И.Л.,	167
ПРОЕКТИРОВАНИЕ В ПРОГРАММНОМ КОМПЛЕКСЕ AUTODESK REVIT Астрашенко В.В., Новикова К.Ю	
АНАЛИЗ СУЩЕСТВУЮЩИХ МЕТОДОВ РЕГУЛИРОВАНИЯ ПОДАЧИ ТЕПЛА В СИСТЕМЫ ОТОПЛЕНИЯ Селезнева Д.Д., Баклушина И.В.	
Селезнева Д.Д., Ваклушина И.В. СОВРЕМЕННЫЕ ТЕПЛОВЫЕ ПУНКТЫ Исламова О.В.	
ПРОМЫШЛЕННЫЕ СИСТЕМЫ ГАЗОСНАБЖЕНИЯ	181

Научное издание

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ТЕХНИЧЕСКИЕ НАУКИ

Выпуск 26

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых

Часть V

Под общей редакцией С.В. Коновалова Технический редактор Г.А. Морина Компьютерная верстка Н.В. Ознобихина

Подписано в печать 08.12.2022 г. Формат бумаги 60х84 1/16. Бумага писчая. Печать офсетная. Усл. печ. л. 26,21 Уч.-изд. л. 28,66 Тираж 300 экз. Заказ № 324

Сибирский государственный индустриальный университет 654007, г. Новокузнецк, ул. Кирова, 42 Издательский центр СибГИУ