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a b s t r a c t

The microstructure and texture evolution during thermo-mechanical processing (TMP) and

their relationship with the mechanical properties in the non-equiatomic CoCrFeNiAl0.4
high-entropy alloy (HEA) were investigated. In this work, a combination of cold rolling and

annealing technology was used to investigate the HEA which has been fabricated by powder

plasma arc additive manufacturing (PPA-AM) in the deformed and recrystallized states.

Microstructure and texture analysis were performed by electron backscatter diffraction. The

mechanical properties were evaluated using static tensile testing. It was substantiated that

annealing twins facilitates the transition from the cube texture to the shear texture and has

a great influence on the evolution of texture after TMP. Based on the research of

CoCrFeNiAl0.4 high-entropy alloy, thermo-mechanical processing under appropriate condi-

tions can increase the work hardening rate, but the work hardening rate is relatively stable

under 30%e45% plastic deformation. The correlation during TMP between mechanical

properties and work hardening, texture evolution, and recrystallization was discussed.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The high entropy alloys (HEAs) are regarded as materials of

future which comprise of 5 or more elements with atomic
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ratio of each is between 5% and 35%. The high-entropy effect

of the HEAs makes it easier for the multi-component alloy to

form a single-phase solid solution, and the sluggish diffusion

effect makes the phase of multi-component alloys relatively

stable even at high temperature [1]. The lattice-distortions
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and the cocktail effect make it possible for the high entropy

alloy to have many sought-after mechanical properties, such

as the high yield strength [2], better corrosion resistance [3,4],

high strength and hardness [5,6], and good thermal stability

[7,8], etc. Ever since the HEAs was defined and named by Yeh

and Cantor et al. [9,10], it has gained a lot of attention from

researchers around the world.

Commonly, the high value of configurational entropy

makes it easier for HEAs to form disordered solid solutions

such as Face-Centered-Cubic (FCC), Body-Centered-Cubic

(BCC), and Hexagonal- Close-Packed (HCP), rather than form-

ing intermetallic compounds (IMCs). The single-phase solid

solution HEAs inherit characteristics of their basic structure in

terms of dominance in properties associated with the struc-

ture. The FCC-HEAs exhibit a good ductility but a lower yield

strength due to their FCC structural characteristics [11,12].

The structure of HEAs bears a great significance during the

post fabrication thermo-mechanical processing (TMP) [13].

The structure evolution in FCC-HEAs after TMP induce plastic

deformation significantly influences the mechanical proper-

ties of HEAs. In addition, whether it is the texture evolution of

the FCC-HEAs or its plastic deformation mechanism, they all

depend greatly on the stacking fault energy (SFE) [14e17]. FCC-

HEAs have been long sought for their many desirable me-

chanical attributes [18]. Gludovatz et al. [19] reduced the

temperature to transform the plane slip dislocation at room

temperature into deformation twins to obtain CoCrFeNiMn

FCC-based alloy with excellent mechanical properties. The

CoCrNi FCC-based alloy induces twinning by plastic defor-

mation, resulting in an increase in strength and ductility [20].

More and more scientific activities have focused on system-

atic research on the FCC-HEAs to improve mechanical prop-

erties and reveal deformation mechanism [18,21,22].

To promote the mechanical properties of HEAs as struc-

turalmaterials, it is highly desirable to improve the strength of

HEAs while maintaining good ductility. The traditional way of

designing and controlling the microstructure is to carry out

appropriate alloying and heat treatment of the material [23].

The TMP treatment combining the plastic deformation with

heat treatment such as water quenching, heating, and cooling

at different rates can attain tailored microstructure and

resultant mechanical properties [24]. Compared with hot
Fig. 1 e (a) Schematic diagram of high-entropy alloys fabricated b

(b) schematic showing the location of samples taken for micros
rolling, cold rolling can attain relatively fine grains and reduce

the recrystallization temperature of the alloy [25], leading to

significant reduction in energy required for recrystallization.

However, underlying deformation mechanism during TMP of

HEAs is very scantly reported.

The routes of preparing HEAs include vacuum arc casting

[26,27], laser cladding [28], plasma sintering [29], wire-arc ad-

ditive manufacturing [30,31] and powder metallurgy [32], etc.

However, these routes have a number limitation with regard

to single preparation shape, high cost, and lowmanufacturing

efficiency, which limit the wide application of this technology

[33,34]. The powder plasma arc additive manufacturing tech-

nology used in this paper can overcome these shortcomings

and produce finer grain HEAs.

In this work, the CoCrFeNiAl0.4 HEA was prepared by

powder plasma arc additive manufacturing technology, fol-

lowed by TMP. The TMP was performed to induce various

degree of cold-work via rolling to study the plastic deforma-

tion mechanism. In order to demonstrate the plastic defor-

mationmechanism in the developedHEAs, (i)Work hardening

behavior of FCC CoCrFeNiAl0.4 HEA during TMP, (ii) Effect of

TMP with different degrees of cold rolling of texture evolution

and (iii) Recrystallization behavior of HEAs under different

plastic deformations was performed.
2. Materials and methods

The purity of the elemental metal powder used in this study

is greater than 99.5%, and the powder particle size is

150e325 mesh. The mixed elemental powder and alumina

grinding balls are effectively mechanically alloyed in a

high-energy planetary ball mill filled under protective gas at

a volume ratio of 1:1.5 for 6 h to make powder homogeni-

zation. The powder plasma arc additive manufacturing

equipment was used to deposit layer by layer. During the

deposition process, an angle grinder was used to remove the

metal oxide layer on the surface of the deposited layer.

CoCrFeNiAl0.4 HEA block was prepared with a wire-cut

electric discharge machine to prepare cold-rolled speci-

mens. The processing diagram and scheme of sampling

location are shown in Fig. 1.
y powder plasma arc additivemanufacturing (PPA-AM) and

tructural evaluation.
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Fig. 2 e (a) Trues stressestrain and (b) Work-hardening rate-true strain curve of CoCrFeNiAl0.4 under different plastic

deformation.
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Fig. 3 e Work-hardening rate-true strain curve of

CoCrFeNiAl0.4 under 30% and 45% plastic deformation.
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The dog-bone shaped specimens were used for the tensile

tests and tensile test was conducted using the universal testing

machine (E45.105) at room temperature with a strain rate of

10�3s�1. The texture evolution and recrystallization behavior

were investigated by electron backscatter diffraction (EBSD,

Oxford Nordly Max3, Oxford Instrument Technology Co., Ltd.).
3. Result & discussion

In this paper, CoCrFeNiAl0.4 HEA was prepared by powder

plasma arc additive manufacturing technology, and then cold
Fig. 4 e Volume fraction of texture component of the CoCrFe
rolled to reduce the thickness of alloys by 15%, 30% and 45%.

The as-prepared samples were kept at 1000 �C for 1 h followed

by water quenching. X0, X1, X2, and X3 represent the as-

deposited sample and the samples with 15%, 30%, and 45%

cold-rolled deformation, respectively.

3.1. Behavior of work hardening

The cold-work significantly enhances the dislocation density

causing increase in strength of the alloys under conditions of

plastic deformation. The mechanical properties of

CoCrFeNiAl0.4 HEA under different extent of plastic de-

formations were measured by tensile tests at room tempera-

ture (Fig. 2a).

The yield strength (YS) and the ultimate tensile strength

(UTS) of the as-deposited HEA are 253 MPa and 527 MPa,

respectively, as shown in Fig. 2a. Both YS and UTS increased

after the TMP. Accordingly, the YS and UTS increased by

~110% and ~67% to ~530 MPa and ~880 MPa, respectively. In

addition, the fracture strain of sample X1 HEA is found to be

~38.9%, which is an increase of 24.7%. For sample X1, YS and

UTS are measured at ~360 MPa and ~837 MPa, respectively. It

is evident that the sample X2 has better UTS than the X1. The

enhancement in the strength of sample X2 HEA is attributed

to twinning in the deformation process and provides addi-

tional work hardening [35]. Work hardening plot of

CoCrFeNiAl0.4 HEA is shown in Fig. 2b. The interaction of

dislocations and twins leads to HEA with good mechanical

properties and high work hardening ability [36,37].

The twins offer obstacle to the dislocation slip and increase

dislocation density through pileup [38]. But, the work hard-

ening rate at room temperature continues to decrease as the

strain increases, because the twins are not activated until the

fracture [35].
NiAl0.4 HEA subjected to thermo-mechanical processing.
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Table 1 e Texture component in the CoCrFeNiAl0.4 HEA
under different extent plastic deformations.

Texture
component

Miller
indices

41 F 42 Symbol

D {113} <332> 90 27 45

Cube {001} <100> 0 0 0

Rotated cube {100} <011> 0 0 45

Shear texture {112} <110> 0 35 45

Goss/Brass {110} <111> 55 45 0
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The work-hardening-rate to trueestrain curve of the

CoCrFeNiAl0.4 HEA (Fig. 2b), shows that, except for the as-

deposited alloy, all TMP treated samples have two inflection

points. Compared with the as-deposited X0 whose work

hardening rate decreases monotonously, the work hardening

rate of the thermo-mechanical processing samples follow the

trend of first decrease, and then increase. With the increasing

of cold rolling deformation, it provides the energy for dislo-

cation nucleation inside the recrystallized grains. Therefore,

the work hardening rate of the thermomechanical treated

specimens first decreases and then increases [39]. The work

hardening rate curve of X0 is similar to the high SFE alloys,

while X1, X2 and X3 with two inflection subdivided into 5

states by Gutierrez et al. [40,41]. The first inflection point is

usually related to the formation of dislocation substructures

composed of dislocation unit cells and high-density disloca-

tion shear bands [42]. The work hardening rate of the

CoCrFeNiAl0.4 HEA is improved by thermo-mechanical
Fig. 5 e IPF of CoCrFeNiAl0.4 HEA (a) X0 as-deposited,
treatment. However, X2 and X3 have almost the same work

hardening rate, the curves of X2 and X3 nearly coincide (Fig. 3).

It can be inferred that the work hardening rate does not in-

crease indefinitely with the increase in the amount of cold

rolling deformation.

3.2. Texture evolution

The volume fraction of texture during TMP are shown by ODF

sections (Fig. 6) and quantitative analysis the volume fractions

of rolling texture components (Fig. 4).

Above a different extent plastic deformation, in the ODF

sections characteristic texture components of CoCrFeNiAl0.4
HEA are seen, like D, cube, rotated cube, etc (for definition

see Table 1). The main texture components in the HEA for

different amount of cold rolling plastic deformation are very

similar to the one's belongings to the as-deposited sample,

and the texture mainly composed of cube texture ({001}

<100>), rotated cube texture ({100} <011>) and shear texture

({112} <110>). The D texture component disappear compared

to the as-deposited sample, which shows a maximum in-

tensity of ~1.9. With the increase in the amount of cold

rolling plastic deformation, the strength of rotated cube

texture and shear texture are greatly increased, and the

maximum intensity of the two textures is ~9.4 and ~13,

respectively, accompanied by the decrease of cube texture

({001} <100>). An increase in the thickness reduction to 45%,

the development of Goss/Brass texture ({110} <111>) as a

new component can be observed in the 42 ¼ 85� section of
(b) X1 15%-CR, (c) X2 30%-CR and (d) X3 45%-CR.
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ODFs of the CoCrFeNiAl0.4. However, the rotated cube texture

with the intensity of 1.9 remains relative stable. In addition,

shear texture with the intensity of 11 can be seen in the

42 ¼ 45� section of the ODF for the 45% cold-rolled sample. It

is worth noting that the volume fraction of shear texture

increases sharply after the cold rolling deformation indi-

cating that the strength of the shear texture is affected by

the plastic deformation, as has been reported in the previous

literature [43].

Annealing twins appeared in the IPF maps (Fig. 5) of

CoCrFeNiAl0.4 HEA leading to sharply increase in shear texture

and cubic texture when the reduction of thickness reaches to

30% during TMP. The main reason for this texture evolution

may be the appearance of annealing twins [44]. It can be seen

from the statistical volume fraction diagram of typical texture

(Fig. 4) that CoCrFeNiAl0.4 HEA produced by powder plasma arc

additive manufacturing (PPA-AM) weakens the preferred
Fig. 6 e The 42 ¼ 0�, 45� and 65� sections of the ODFs of th
orientation of the initial texture and increases the volume

fraction of the random texture under the condition of small

plastic deformation. Thermo-mechanical treatment with a

larger amount of deformation may further change the

preferred orientation of the overall texture.

3.3. Behavior of recrystallization

Commonly, recrystallization is usually used to describe the

phenomenon that the deformed structure is replaced by new

grains during the annealing process [45]. The energy for new

grain growth is stored by dislocations and sub-boundaries

during plastic deformation. During TMP, the dislocation den-

sity is increased due to cold rolling plastic deformation, which

supplies initial energy for the recrystallization of the alloys.

The recrystallization map (Fig. 7) consists of red, blue and

yellow parts, which represent deformed structure,
e CoCrFeNiAl0.4 during thermo-mechanical processing.
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Fig. 7 e DefRex map of CoCrFeNiAl0.4 HEA (a) X0 As-deposited, (b) X1 15%-CR, (c) X2 30%-CR and (d) X3 45%-CR.
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recrystallized structure and substructures, respectively. The

red deformed structure is full of dislocations, the yellow other

structures can absorb dislocations, and the blue recrystallized

structure has almost no dislocations [46]. During the thermo-

mechanical treatment of HEA, the volume fraction of recrys-

tallized grains keeps increasing with the amount of cold roll-

ing plastic deformation. Meanwhile, twins are mainly

concentrated in the non-recrystallized grains under the 30%

plastic deformation, while there are almost no twins in the

recrystallized grains. This phenomenon is attributed to the

fact that recrystallized grains containing a small amount of

dislocations cannot induce deform twinning, so in the

recrystallized grains is annealing twins [47]. It can be seen

from the recrystallization map that the structure has not un-

dergone TMP is almost completely recrystallized, while sam-

ples having higher degree of cold rolling plastic deformation

showed increasing rate of recrystallization. This indicates that

the recrystallization of CoCrFeNiAl0.4 HEA starts at a small

amount of plastic deformation, causing a large numbers of

dislocations to provide energy for recrystallization [48]. The

recrystallized grains have the characteristics of low strength

and high plastic deformation ability [47], thermo-mechanical

processing is used to adjust the recrystallization degree of

alloy, and simultaneously improve the strength and ductility.
4. Conclusions

In this study, an innovative plasma arc additive

manufacturing technology was used to fabricate non-

equiatomic CoCrFeNiAl0.4 HEA, which has been subject to
thermo-mechanical processing. The effect of cold rolling fol-

lowed by annealing on its work hardening ability, texture

evolution and recrystallization behavior was studied. The

following are the conclusions:

1. Thermo-mechanical processing can improve the work

hardening rate of CoCrFeNiAl0.4 HEA, but the work hard-

ening rate will not increase continuously with the increase

of plastic deformation. In this paper, the work hardening

rate of CoCrFeNiAl0.4 HEA becomes relatively stable after

thickness reductionmore than 30% due to annealing twins.

2. The texture evolution of CoCrFeNiAl0.4 HEA during thermo-

mechanical processing is closely related to annealing twins.

3. Thermo-mechanical processing with a small deformation

can weaken the intensity of the initial texture and increase

the volume fraction of random texture.

4. Tailoring the volume fraction of deformed grains filledwith

dislocations and recrystallized grains with higher ductility

can overcome the trade-off of strength and toughness.
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