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Abstract. Increasing the accuracy of computer simulation of the crystallization processes of 

aluminum alloys and the solidification of castings requires reliable data on the thermo-physical 

properties of the alloys used. The present paper describes a technique for calculating the heat of 

crystallization and heat capacity of aluminum alloys in the range from the temperature of its 

pouring into the mold to the average temperature of the solidified skin according to the results 

of thermal analysis. The proposed technique can be used to determine the values of thermo-

physical properties of aluminum alloys in industrial and research laboratories and centers 

involved in production of high-quality castings.  

1. Introduction 
Aluminum alloys are one of the most economical and technologically advanced materials used in 

industrial foundry technologies in the production of lightweight structural parts [1, 2]. The growing 

requirements for the quality of cast products from aluminum alloys necessitate the development of new 

and optimization of existing technological processes of melting and casting [3-5].  

Computer simulation of the crystallization processes of aluminum alloys and the solidification of 

castings from them is currently widely used both in scientific research practice and in industrial 

conditions for solving problems of increasing the productivity and quality of manufactured castings [6-

9]. This approach has repeatedly proved its effectiveness, allowing us to predict the influence of different 

casting and solidification parameters without expensive experimental studies. The accuracy of forecast 

estimates in the simulation will be largely determined by the accuracy of the experimental determination 

or theoretical calculation of the thermo-physical properties of aluminum alloys [10, 11]. 

Currently, the literature provides limited information on the calculated thermo-physical properties of 

aluminum alloys with different compositions, and even more so on methods for calculating these 

properties. Among the published works, it should be noted the studies related to the creation of new 

methods for determining some required thermo-physical and structural properties for the simulation of 

cast aluminum alloys using their known chemical composition [12], with development of the tools for 
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calculation of thermo-physical properties using the CALPHAD approach for modeling of 

multicomponent alloys [13], and a series of works devoted to the direct calculation of the values of 

various thermo-physical properties of aluminum alloys [14-16]. 

However, the reproducibility and accuracy of the results of experimental determination or modeling 

of the thermo-physical properties of aluminum alloys depends on a wide range of determining factors. 

We propose to divide this set of factors into four main groups: 

1) factors associated with the characteristics of the test sample: mass of the sample; the size of the 

sample, the location of the measuring sensor in the sample, the shape of the sample holder (from thin 

plates to deep crucibles), the material of the sample holder (glass, ceramics, metals); 

2) factors associated with the conditions of the experiment: the heating/cooling rate of the sample, 

the temperature gradient in the body of the sample; 

3) factors associated with the measuring device: digital recording speed of the measured values; 

sensitivity of measuring devices, filtering/smoothing systems for the measured signal; 

4) factors related to the quality of theoretical models for calculating the thermo-physical properties 

of aluminum alloys: accepted assumptions, selection of constants, boundary conditions, etc. 

Many of these factors are not fully understood in the literature. The difficulty lies in the fact that the 

created computational models are applicable, as a rule, strictly for specific types of samples and/or 

devices. On the one hand, this is an attempt to stabilize a large number of external factors at the same 

level and to simplify the calculation models; on the other hand, this is a loss of information about the 

structural changes of a multicomponent aluminum alloy during phase transitions. 

The present paper describes a technique for calculating the heat of crystallization and heat capacity 

of aluminum alloys in the range from the temperature of its pouring into the mold to the average 

temperature of the solidified skin according to the results of thermal analysis. 

 

2. Methods 

Total solidification time (f) with perfect contact at the crystallization front and at the “casting - mold" 

interface for casting of any configuration with an effective size R can be calculated by following 

equation:  
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where f – total solidification time of casting,  

m – thermal conductivity of the mold,  

a – thermal conductivity of the alloy,  

a – coefficient depending on casting configuration: for infinite plate a = 1; for infinite cylinder a = 3; 

for sphere a = 6; 

b — dimensionless coefficient, showing how many times the thickness of the heated layer of the mold 

is greater than the thickness of the solidified skin of the alloy, and 
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В – coefficient, J/(m3K), defined as 
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where Lcr — heat of crystallization of the alloy, J/kg; 

a, m — density of the alloy and mold, kg/m3; 

сa, сm — heat capacity of the alloy and mold, J/(kgK); 

Тp — pouring temperature, K; 

Тcr — crystallization temperature, K; 
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mT , mT  — the initial temperature of the mold and the average temperature of the heated layer of the 

mold, K; 

aT  — the average temperature of the solidified skin of the alloy, K; 

m, a — thermal conductivity of the mold and alloy, W/(mK);  

R — effective size of the casting, R = V0/F0 (where V0 and F0 – volume and surface area of the casting), 

m. 

From expressions (1), (2) and (3), we can derive a formula for determining the heat of crystallization 

of an alloy: 
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The heat of crystallization of the alloy can also be determined by the results of thermal analysis. The 

initial data are the values of temperature and its first derivative, measured at each moment of time (figure 

1, a). According to these data, the temperatures of liquidus and solidus can be determined, as well as the 

cooling rate, which is calculated by the formula: 

 

 1 dT
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T d



 
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where T() — current temperature value, K;  

 — current time point, s.  

We accept that the cooling rate depends only on the current temperature and does not depend on 

other thermo-physical parameters. In the case of a phase transformation, the release of crystallization 

heat leads to a temperature stop and, in some cases, even to an increase in temperature. Thus, considering 

the thermal balance of the process, we can assume that the change in the cooling rate (dT()/d) in the 

crystallization interval directly reflects the solidification process and the release of the heat of 

crystallization Lcr().Based on this, it is possible to calculate the release of this heat in the time interval 

(0 – 1), where 0 and 1 — the time of the beginning and end of the phase transformation, respectively. 

In this interval, the cooling rate can be determined by the formula: 
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From (5) and (6) it follows 
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If there are no phase transformations, then dT()/d curve is well approximated by the exponential; 

therefore, to calculate the heat of crystallization in the time interval (0 – 1) the dependence dT()/d 
will have the form (figure 1, b ): 
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where а0 and а1 — coefficients.  

After taking the logarithm of (8) we get 
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Figure 1. Determination of the heat of crystallization of the alloy according to the results of thermal 

analysis: a) thermal curve; b) the first derivative of the thermal curve. 

 

To determine the coefficients а0 and а1 taking into account the initial conditions, we have a system 

of equations: 
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Knowing the coefficients а0 and а1, we can determine the cooling rate in the time interval (0 – 1) 

by the formula: 
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3. Results and discussion 

By successive transformations from formulas (5), (7) and (11), the computational expression for 

determining the heat of crystallization of the alloy was obtained: 
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Thus, the heat of crystallization can be determined in two ways: according to formulas (4) and (12). 

The value of the heat of crystallization, as can be seen from (4) and (12), depends on the thermo-physical 

parameters: the heat capacity of the alloy and mold, thermal conductivity of the alloy and mold, and 

density of the alloy and mold, which are functions of temperature and their exact values are often 

unknown. When calculating heat of crystallization according to one of the methods, ambiguity of 

solutions may arise: the same value of heat can correspond to different sets of thermo-physical 

parameters. When using two calculation methods, we can write a system of equations: 
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The system of equations (13) is determined, and its solution is single-valued under the following 

assumptions. Since this is a system of two equations, it can be solved with no more than two unknowns. 

Therefore, in addition to the determined heat of crystallization, it is possible to have one unknown 

parameter. The heat capacity of the alloy varies over a wide range and has the greatest influence on the 

calculation results, therefore, factors such as heat capacity, thermal conductivity and density of the mold 

material, thermal conductivity and density of the alloy are assumed to be constant. Thus, when solving 

the system of equations (13), the heat of crystallization of the alloy and its average heat capacity can be 

determined. 

Note that the first equation in the system of equations (13) takes into account the average heat 

capacity of the alloy, i.e., the heat capacity of the alloy in the range from the pouring temperature to the 

average temperature of the solidified skin of the alloy. This method leads to an underestimation of the 

average heat capacity of the alloy. Since the system of equations for the heat capacity of the alloy сa is 

solved, this fact leads to a decrease in the term T()ca and, as a result, to a decrease in the final value of 

the heat of crystallization. This problem can be solved by dividing the heat capacity of the alloy in the 

first equation into heat capacity in the liquid state and heat capacity in the solid state. In this case, the 

heat capacity of the alloy in the liquid state should be substituted into the second equation.  

4. Conclusion 

A technique for calculating the heat of crystallization and heat capacity of aluminum alloys based on 

the results of thermal analysis through the solution of an algebraic system of equations with two 

unknowns is proposed. The technique allows to determine thermo-physical properties according to the 

results of experimental studies not on standard samples, but directly on a real casting. This is an 

additional positive side of the proposed technique, because the cooling rate of castings in the mold has 

a significant effect on the formed structure and the casting defects of a multicomponent aluminum alloy 

during its transition from a liquid state to a solid state and, as a result, on the estimated thermal 

properties. An additional measurement and recording of the pouring temperature, the initial temperature 

of the mold, the average temperature of the heated mold layer and the average temperature of the 

solidified skin of the alloy can significantly increase the accuracy of the predictive estimates of the 

thermo-physical properties of aluminum alloys. The calculation algorithm is easily programmed in any 

algorithmic language or can be implemented using an application package MATLAB for solving 

technical computing problems.  
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