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Abstract

The paper suggests a disintegration mechanism of silicon particles in aluminum in the heat-impact
zone of alow-energy high-current electron beam. This inclusion was modeled with a round plate
(radius R and thickness h). Disintegration of silicon inclusion was assumed to be possible due to
discrepancy of elasticity modulus and linear expansion thermal coefficient caused by the evolving
dynamic instability. In conditions of high-speed cooling a silicon plate is subjected to compression
stresses, since linear expansion coefficient of aluminum is above that of silicon. If these forces applied,
instability and fracture of a plate are registered. Using methods of elasticity theory it was found out
that the value of these stresses is around 1 GPa. The initial stage of this instability was analyzed by
methods of Theory of Plates and Shells. In terms of this theory, a critical stress (~107-10° Pa) was
determined close to the clamped ends of a plate and hinged plates. So, it was concluded, thata
suggested mechanism of silicon particles disintegration in the heat-impact zone of an electron beam
seems to be the most probable one. Relay-Taylor instability on the inclusion and matrix border is
thought to be another mechanism of particles disintegration. According to the linear analysis of this
instability, a wavelength with the maximal growth speed of disturbances is ~4 pm, for inclusions

~1 pm these findings exceed significantly the experimental data.

1. Introduction

Aluminum—silicon alloys (silumins) are widely applied in aircraft production, motor-car manufacturing, and
other industries. Satisfactory casting properties make possible to use them for manufacturing thin-wall and
water-proof foundry goods with complex physical configuration. A shortcoming of silumins is low mechanical
properties because of rough dispersive inclusions of silicon. These inclusions are concentrators of mechanical
stresses, a high level of which causes cracking. Therefore, it’s necessary to develop methods of reducing the sizes
of silicon inclusions. To date, different types of heat treatment have been used in order to find a solution of this
problem, including application of concentrated energy flows (laser treatment, electron-beam-treatment etc)
[1-8]. In the process of heat treatment of multiphase alloys particles of the second phase are subject to two types
of transformations: (1) coalescence, i.e. enlargement of these particles; (2) refinement of the second phase
particles with the subsequent spheroidization. The second transformation is considered in more details. Studies
[7, 8] have revealed that this process is based on the mechanism of diffusion due to the gradient of concentration
on the border < second phase/matrix>>. This process accelerates as the temperature rises. Second phase
inclusions can have an equiaxed configuration, since plates or needles split into several particles. Crystal lattice
defects in the matrix and second phase are important for splitting. Studies [9, 10] demonstrate that second phase
particles with an equiaxed configuration are formed due to the surface tension and suggest a simple dynamic
model of this process. Grinfeld [11, 12] analyzed a second variation of available energy function in the system
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< melt/crystal> and found out, that non-hydrostatic components of a stress field in the elastic crystals cause
instability of their interface, furthermore, the development of this instability results from dissolving a solid phase
by liquid or transport of particles on crystal edge. The interphase surface tension can’t damp this instability in a
long-wavelength range; however, it has a stabilizing effect. This instability develops if both phases are solids. It
develops mainly because shift stresses exceed slightly their critical value, which, in its turn, is dominated by the
ratio of longitudinal and transverse speed of sound.

The study [13] provided a deep insight into the behavior of perlite structure when pulse loading. It indicated
fragmentation of perlite components into ultrathin particles at the beginning of high-speed stretching (in the
zone of unloading wave interference). Cement carbide as an instable phase starts dissolving, and carbon gets into
areaction with ferrite, new globules of cement carbide are found on some spots on the interface of ferrite and
cement carbide. The second stage in mechanical-chemical spheroidization of perlite is possible due to additional
introduction of carbon atoms from matrix into the spall damaging zone. Ultrathin dimensions of particles,
dissolution of perlite components and their saturation with carbon in the second chemical reaction results
probably in the increase of cementite concentration due to the substitution reaction between additional carbon
and iron. Similar mechanism was found in differently hardened rail steel operated for along time [ 14, 15].
Studies [16, 17] analyzed dissolution of carbon particles under electron beams, according to their findings, a
principal mechanism of dissolution is diffusion, inclusion thickness versus time ratio was determined.
Researchers found that nano-dimensional particles dissolve quicker than micro-dimensional ones. Diffusion
coefficient of silicon in aluminum is around 10™'° cm” s~ for silumins, therefore, dissolution time of inclusions
ranges ~10-100 s, so diffusion isn’t a main mechanism of disintegration and spheroidization in aluminum and
silicon alloys treated by electron beams. Study [ 18] highlighted a mechanism, which says that destruction of
silicon plates leads to spheroidization because linear expansion thermal coefficients of matrix and inclusion are
different. For instance, the share of silicon plates is much smaller than that of aluminum matrix, so it is
aluminum matrix that has the biggest effect on thermal expansion. Linear expansion coefficient of aluminum is
4 times higher than that of silicon. Therefore, thermal expansion (compression) of two phases is mutually
exclusive. As a consequence, mechanical stresses arise inevitably between phases. Inclusions of silicon can
absorb only a quarter (4) of thermal expansion (compression) emitted by aluminum matrix through its own
thermal expansion (compression). The remaining part is important for matrix deformation and destruction of
silicon plates (due to their brittleness). Non-homogenous surface of inclusion causes cracking. Cracks are
capillary vessels for aluminum atoms. Mechanical stresses created by cracks are analogues of capillary forces,
which move atoms of matrix into the gaps formed between inclusions. Flows of vacancies and silicon atoms have
areverse direction. A similar mechanism of second phase particles disintegration has been found in conditions
of pulse high-density electric current impact [ 19] and selective laser melting [20]. Researchers [21, 22]
investigated instability of the interface between materials under contact loading. Linear analysis revealed two
instabilities, which differ significantly from a wave-guiding instability: (1) dynamical instability, initiated by
modes, propagating as fast as a dilatation wave contrarily to the sliding movement with a low wavenumber; (2)
dynamical instability, arising due to modes propagating as fast as shear waves toward sliding.

To sum up, both disintegration mechanisms despite being different result in instability in the surface of the
second phase coarse inclusion.

Figure 1(a) gives electronic-microscopic image of silumin structure in the initial state.

As seen in the figure, silumin is a multiphase aggregate, made up by aluminum-based solid solution grains,
eutectic Al-Si grains, primary silicon inclusions, and intermetallic compounds, shape and dimensions of which
are quite different. Electron beam treatment results in formation of a multi-layer gradient structure. In
morphology of the defect sub-structure three layers are identified, in this study [24] they are referred to as
surface, intermediate and thermal impact layer. The surface layer has a columnar crystallization structure, which
is formed when high-speed cooling of molten material (figure 1(b)). According to SEM-data thickness of this
layer ranges 70 to 100 pum. TEM-based analysis of the intermediate layer [23] revealed primary inclusions of the
second phase in its structure (figure 1(c)), which are centers of aluminum crystallization. Dimensionally these
inclusions are shown in figure 2. This regularity has a bimodal character. Particles are 138.9 + 45.3 nm on
average. So, decrement of disturbances on the interface is assumed to have two maximums.

2. Problem formulation

A mechanism of silicon plate disintegration is assumed to evolve in the heat-impact zone under electron-beam
treatment. A silicon plate incorporated in aluminum matrix is analyzed. As mentioned in Introduction, different
elasticity modules and linear expansion coefficients of aluminum and silicon on the interface of inclusion and
matrix are the reason for mechanical stresses, which cause its instability and fracture. Figure 3 shows a silicon
plate contacts with aluminum matrix at the stage of cooling. At this point a plate of silicon is loaded with
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Figure 1. Structure of silumin: (a) initial state; (b) and (c) irradiated by a pulse electron beam with energy density 35 ] cm ™2 [23].

compressive stresses [ 18]. A shape of inclusion is approximated to a round and principles of theory of elastic
stability are applied [24—27]. Following these assumptions, two cases are considered: (1) silicon inclusion is a
hinged plate on all sides; (2) plate is clamped on all sides. A force Pis applied to the plate along radius in all cases.
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Figure 2. Size distribution of silicon particles in the heat-impact zone [23].
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A stress-strain problem close to the inclusion is to be solved to determine this force. For this purpose a
system of differential equations is written according to radial movement (u(r)), elasticity modulus (E), Poisson
ratio (v), and linear expansion coefficient («) are constant:

d(1dru, daT,
== =1+ vp)a,—2. 1
dr(r dr ) ( e dr )

The firstlayer is in the range 0 < r < a with parameters of material E}, v, «, the second one
—a < r < ooand E,, vy, oy, where E,, v, a,,—elasticity modulus, Poisson coefficient and linear expansion
coefficient, respectively. External boundary conditionsatr = OuUr — oo:

1(0) = 0, uy(c0) = 0. (2)

A solution, meeting external boundary conditions is as follows:

() =+t [" @+ Gr
r 0

o 7 C
w0 =1+ [ B+ 22, )
Components of stresses
a By E
on() =~ 22 [ RO + G——,
r 0 1 — 1
wE, E
o) = ~ 222 [ @ &de - G2 —. (4)
r a r (1 + 1vy)
Matching conditions of layers are written as a congruence of radial stresses and movement in the point of
layer contactr = a:
—E® + G B_ -G b >
1—u a’(1 + vy)
1+ vpad + Ga = 2;
a
o a
o =2 7 Teeds 5)
a* Jo
The solution of system (5)
1-K
C = — 111 +K) |D,
1 ( 1T K 1( ))
2 _
20 B0 -w) ©
1+K E( + 1)
Distribution of temperatures is to be calculated in order to determine stresses. We address to the case ofa
constant temperature, so
e}
O = 71T0 ()
Taking into account (6) and (7), stresses on the boundary are written as follows:
o = BiBy(1 + v)To((y — ap)vy — (u + ) )

Byvy — B,vs + By + B,

E E
where B; = L _ B, = 2
1 -1y 1 -
Having found the distribution of stresses along the inclusion radius, its stability is to be focused on. The main

motion equation [26, 27] in terms of Theory of Plates and Shells is written as follows:

0w
t
where w—transverse displacement, P—load, p—density of the plate material, h—its thickness,
3
D= % —bending stiffness, A — Laplace operator in polar coordinates. The solution is searched as
- v
given below (9)

w(r, ¢, t) = Z(t) Wy, (r)cos ne (10)
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where Z(t) and wy,,(r)cos(ny) — temporal and coordinate components of transversal displacement. The
amplitude of this displacement w,,,,(r) is dominated by boundary conditions. For hinged plates boundary
conditions are written as follows in equation (9):

AW |V AW

dr? rodr =Oatr==x, an
and for clamped ones:
Wi = AW =0atr=R. (12)
dr
Initial conditions are written:
Z0)=0, Z(0)=0 (13)
The criterion of instability suggested in [28] is used:
Z(ty) =0 (14)

where t.,— critical time (moment of instability initiation).

3. Results and discussion

To solve the problem (9)—(14) Bubnov-Galerkin method is applied. The internalload isas P = q,t, where g, —
rate of loading. For a hinged plate the coordinate component of its displacement is stated as:

r r\"
mn = Jn nmR — | 15
Winn () = J.(By, )(R (R)) (15)
where (3, ,, —equation root:
(ﬁn,mR)]n(ﬁn,mR) - (1 - V)]nJrl(ﬁn,mR) = 0 (16)

where J,(3,,mR) —Bessel function of n-order. The critical load P, = g, t,, is written as follows in this case:

D biphR? (B, — 2(1 + v?)

_ Q2
qotcr*ﬁm,nﬁ + 2 tz 2 1 U2 (17)
For a clamped plate w,,,, (1)
r rY
Wmn(r) = ]n(anJrl,mR)(E - (E) ) (18)
where Oy 1,m— equation root:
Jus1(ang1,mR) = 0 (19)
The criticalload R, = gt for a clamped plate is:
D bl pRz
o = Q= 20
ol = =
The critical load for static loading of a hinged plate is written:
2 D
S 21
P = B @1
and for a clamped plate:
2 D
= Q= 22
b " R (22)

For complex roots a,,, , = %(Zm +4n+ 1), Bpn = 7r(2n + m + %).Table 1 provides input data for

calculations.

Asfoundin (21) and (22), critical loads for inclusions with a radius R ~ 10 gm and thicknessh ~ 1 ymare
p, ~ 4.22 - 10%Pa, p, ~ 1.48 - 10° Pa. The stress on the interface of the inclusion is 1.19 GPa at temperature
577 Kaccording to data in (8). For inclusions with thickness h ~100 nm critical loads are for the first case —
p, ~ 425 - 10° Pa, and for the second — p, ~ 149 - 107 Pa. For inclusions with a radius R~ 100 pmand
thicknessh ~1 pmitisin the first case p, &~ 7.51 - 107 Pa,and in the second. .. Pa.

Therefore, we can conclude that a suggested mechanism provides a reasonable explanation of silicon plate
disintegration in the heat-impact zone in electron-beam treatment. Another mechanism of silicon plate
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Table 1. Material characteristics of matrix and inclusion.

Material
Characteristic Al Si
Elasticity modulus, GPa 70 110
Linear expansion coefficient, K1 28.1-107° 3.68:107°
Poisson coefficient 0.3 0.3
z
r=R+n(z, t)

Y
II\ / \\
[«

I
| 1
\ / \ ‘,’
\
Fluid 1 s
b ’
—- -

~
-

Fluid 2

Figure 4. Principle of Relay-Taylor instability initiation in geometry of cylindrical bodies.

disintegration is Relay-Taylor instability on the interface <inclusion/matrix>>. Mechanical stresses are mass
forces in this case; these stresses arise, as mentioned above, due to different elasticity modules and liner
expansion thermal coefficients. Studies [28, 29] were focused on the initial stage of this instability in geometry of
cylindrical bodies. Figure 4 demonstrates initiation of this instability. Dimensions of particles formed are
proportional to a wavelength with the maximal growth rate of disturbances on the interface. A dispersion
equation is to be solved to determine this wavelength.

Study [29] suggested a dispersion equation for the simple case of viscous-potential flow with consideration
of viscosity on the interface only. Applying this approach to the case under consideration, a motion equation and
boundary conditions are written as follows:

Ow wm  Ow o 0w Op 0w Op

+—+—=0, — =0, =0;
or r or ot pOr ot p,0z
0 0
%_’_24_%:0’%4_&:0,%4_&:0 (23)
or r or ot p,0r ot p,0z
Kinematic conditions on the interfacer = R + 7(t, z):
I I
— = U, — = Up. 24
o b5 ) (24)
Dynamic boundary conditions:
u 8142
+ 2p,v1—— — 20, —— =
P —h 4Lg! or Pav2 ar
_(mn 9
= G(F + @) = (py = PD&N(x, 1). (25)
Impermeability conditions are set on external boundaries:
w(R) =0, w(R) =0 (26)
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Figure 5. Decrement of disturbance versus wavenumber.

Table 2. Data for calculating growth rate of
disturbances.

Material
Parameter Al Si
Density, kg/m’ 2700 2330
Kinematic viscosity, m? /s 1.4-10°° ~107°
Surface tension, N/m? 1.14 1.67

The solution (23)—(27) is searched:

w (1, z, t) = Uy(r)exp(wt + ikz),
uy(r, z, t) = Up(r)exp(wt + ikz),
p,(ry 2, t) = Pi(r)exp(wt + ikz),
P, (1, 2, t) = Pr(r)exp(wt + ikz),
N(z, t) = n,exp(wt + ikz). 27)

Substituting (27) into (23)—(26), a dispersion equation is written

WwHaw+c=0 28)
2 _ 2 _ 2 _ 2 2 _
where g = 2B = D 2K50(E — Vv, ,C= (* = Dw;  x*(0 — Dg ,
E — E,0 E, — E,0 x(E, — E,0) (E, — E;0)R
= xK](Jq)Io(x) + Ko(x) L (x) E— Ki()Io(x) + Ko(x) L (%)

Ki()h(a) — KiGa)h(x) Ki(0)h(w) — Ki@)h(x)
The acceleration of layers is estimated as a relation of thermo-elastic stresses to the difference in layer
1 EoT; E,on T .
( 1Ml 52 ) Acceleration for
72(p1 = P\l — 21y 1 -2,

densities multiplied by amplitude of disturbances: g =

amplitude of disturbances of 1 ymisaround 10'* m's
The solution (28) is written:

w= *% + %\/a2 — 4c (29)

Instability arises if @« = Re(w) > 0. Figure 5 shows the growth rate of disturbances on the interface versus
wavenumber for an inclusion of ~1 pm. The data for calculation are provided in table 2. This figure shows thata
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wavenumber (wavelength) with the maximal growth rateis ~1.38 - 10® m ™" (4.62 um), it exceeds significantly
experimental data.

Viscous-potential approximation used in the study is relevant for inclusions up to 10 um. For bigger
diameters than 10 ym viscosity both on the interface and throughout matrix and inclusion is to be taken into
consideration.
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