

Министерство образования и науки РФ
Научный Совет РАН по физике конденсированных сред
Межгосударственный Координационный Совет по физике прочности
Санкт-Петербургский физико-технический институт им. А.Ф. Иоффе РАН
Национальный исследовательский технологический университет «МИСиС»
Федеральный научно-исследовательский центр
«Кристаллография и фотоника» РАН

М О С К В А 2-5 октября 2017 г.

Седьмая международная конференция «КРИСТАЛЛОФИЗИКА И ДЕФОРМАЦИОННОЕ ПОВЕДЕНИЕ ПЕРСПЕКТИВНЫХ МАТЕРИАЛОВ» посвященная памяти профессора С.С. Горелика

Вторая Международная Школа Молодых Ученых

«АКТУАЛЬНЫЕ ПРОБЛЕМЫ СОВРЕМЕННОГО МАТЕРИАЛОВЕДЕНИЯ»

ТЕЗИСЫ ДОКЛАДОВ

Молодежная школа проводится при финансовой поддержке Российского Научного Фонда (грант № 15-12-30010)

ISBN 978-5-906953-26-1

<u>Е.Е.</u> ДЕГРАДАЦИЯ ЖЕЛЕЗО-НИКЕЛЕВЫХ НАНОТРУБОК В СРЕДАХ С	
РАЗЛИЧНЫМ рН	
Колдаева М.В., Козлова А.Ю., Даринская Е.В.	
ОСОБЕННОСТИ ДВИЖЕНИЯ ДИСЛОКАЦИЙ В КРИСТАЛЛАХ NaCl C	108
ПРИМЕСЬЮ Са и (Са + Ni) ПРИ МАЛЫХ МЕХАНИЧЕСКИХ НАГРУЗКАХ	
Колобов Ю.Р.	
ДИФФУЗИОННО-КОНТРОЛИРУЕМЫЕ ПРОЦЕССЫ НА ГРАНИЦАХ	
ЗЕРЕН И ПЛАСТИЧНОСТЬ ПОЛИ- И СУБМИКРОКРИСТАЛЛИЧЕСКИХ	109
МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ	
Колотова Л.Н.	
АТОМИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФАЗОВЫХ И СТРУКТУРНЫХ	110
ПРЕВРАЩЕНИЙ В СПЛАВЕ УРАН-МОЛИБДЕН	110
Коморников В.А., Гречихина А.М., Гребенев В.В., Тимаков И.С., Зайнуллин	
O.B.	
ПРОТОНПРОВОДЯЩИЕ КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ НА	111
ОСНОВЕ ГИДРОСУЛЬФАТФОСФАТОВ ЦЕЗИЯ	
Коржов В.П., Зверев В.Н.	
ГИГАНТСКАЯ АНИЗОТРОПИЯ СВЕРХПРОВОДЯЩЕГО	
КРИТИЧЕСКОГО ТОКА В МНОГОСЛОЙНОЙ ЛЕНТЕ ИЗ СПЛАВА Nb-	112
50%Ті, ПОЛУЧЕННОЙ ИЗ КОМПОЗИТА №Ті	
<u>Коржов В.П.,</u> Курлов В.Н., Кийко В.М.	
КОМПОЗИТ ТВЕРДОФАЗНОЙ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ С	113
(Ті–АІ)-МАТРИЦЕЙ, АРМИРОВАННОЙ САПФИРОВЫМИ ВОЛОКНАМИ	113
Кормышев В.Е., Громов В.Е., Иванов Ю.Ф., Коновалов С.В.	
ВЛИЯНИЕ ЭЛЕКТРОННО-ПУЧКОВОЙ ОБРАБОТКИ НА СТРУКТУРУ И	
СВОЙСТВ ПОКРЫТИЙ, СФОРМИРОВАННЫХ НА СТАЛИ HARDOX-450	114
НАПЛАВОЧНОЙ ПРОВОЛОКОЙ	
<u>Корнева М.А.</u> , Стариков С.В. ИЗУЧЕНИЕ РЕКРИСТАЛЛИЗАЦИИ В Zr-Nb СПЛАВАХ МЕТОДОМ	115
АТОМИСТИЧЕСКОГО МОДЕЛИРОВАНИЯ	113
Корнеев А.В., Рябчук В.К., Франк-Каменецкая О.В., Кузьмина М.А.	116
Ті-СОДЕРЖАЩИЕ АПАТИТЫ КАК ФОТОКАТАЛИЗАТОРЫ	
<u>Коробейникова Е.Н.</u> , Стрелов В.И., Сидоров В.С., Кожемякин Г.Н., Прохоров	
И.А., Власов В.Н.	117
ПОЛУЧЕНИЕ ВЫСОКООДНОРОДНЫХ КРИСТАЛЛОВ	117
ПОЛУПРОВОДНИКОВ МЕТОДОМ БРИДЖМЕНА: ОБОРУДОВАНИЕ,	
ТЕХНОЛОГИЯ, ХАРАКТЕРИЗАЦИЯ	
Кочервинский В.В., Киселев Д.А., Малинкович М.Д.	
ВЛИЯНИЕ ТЕКСТУРЫ ПЛЕНОК НА ВЫСОКОВОЛЬТНУЮ	110
ПОЛЯРИЗАЦИЮ И ЛОКАЛЬНЫЕ ПЬЕЗОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА	118
СЕГНЕТОЭЛЕКТРИЧЕСКИХ ПОЛИМЕРОВ НА ОСНОВЕ	
ВИНИЛИДЕНФТОРИДА	
Красильников О.М., <u>Луговской А.В.</u> , Дикан В., Векилов Ю.Х., Абрикосов	
И.А.	119
УПРУГИЕ СВОЙСТВА ε-Fe ПРИ ВЫСОКИХ ДАВЛЕНИЯХ	
Крутяк Н.Р., Спасский Д.А.	
ЛЮМИНИСЦЕНТНЫЕ СВОЙСТВА НОВЫХ СМЕШАННЫХ	120
$ m KРИСТАЛЛОВ\ Zn_xMg_{1-x}WO_4$	
Крымов В М., Носов Ю Г. Аверкин А И. Кустов С Б. Солдатов А В.	121

ВЛИЯНИЕ ЭЛЕКТРОННО-ПУЧКОВОЙ ОБРАБОТКИ НА СТРУКТУРУ И СВОЙСТВ ПОКРЫТИЙ, СФОРМИРОВАННЫХ НА СТАЛИ HARDOX-450 НАПЛАВОЧНОЙ ПРОВОЛОКОЙ

Кормышев В.Е.¹, Громов В.Е.¹, Иванов Ю.Ф.^{2,3}, Коновалов С.В.^{1,4},

¹Сибирский государственный индустриальный университет, Новокузнецк, Россия, gromov@physics.sibsiu.ru

²Национальный исследовательский Томский политехнический университет, Томск, Россия

³Институт сильноточной электроники СО РАН, Томск, Россия, <u>yufi55@mail.ru</u> ⁴Самарский национальный исследовательский университет имени С.П. Королева, Самара, Россия, <u>ksv@ssau.ru</u>

В последние годы получили развитие исследования в области наплавки композиционных покрытий, упрочненных частицами карбидов, боридов и других высокотвердых и высокомодульных фаз. Такие покрытия эффективно работают в условиях сильного абразивного изнашивания и ударных нагрузок и применяются в различных областях промышленности. В качестве дополнительной упрочняющей поверхностной обработки часто используют концентрированные потоки энергии, наиболее эффективным из которых являются интенсивные электронные пучки.

Работа направлена на анализ структуры и механических свойств наплавленного слоя, модифицированного интенсивным импульсным электронным пучком. В качестве материала основы использовали сталь марки Hardox 450, на которую осуществляли наплавку проволоки на основе Fe, содержащей C, Si, Mn, Cr, Ni, Mo, B, P и S. Исследования фазового состава и дефектной структуры стали и наплавляемого металла осуществляли методами просвечивающей электронной микроскопии тонких фольг.

Исследования фазового состава, дефектной субструктуры и механических свойств стали Hardox 450 с наплавленным слоем порошковой проволоки, показали, что в процессе наплавки формируется модифицированный поверхностный слой с градиентной структурой, механические свойства (микротвердость), фазовый состав и дефектная субструктура которого изменяются закономерным образом.

Установлено, что в результате наплавки образуется высокопрочный поверхностный слой толщиной не менее 6 мм, средняя микротвердость которого составляет 10,2 ГПа. При переходе от наплавленного слоя к материалу основы величина микротвердости быстро снижается до \sim 6 ГПа, то есть микротвердость наплавленного слоя выше, чем металла основы (сталь Hardox 450) в \sim 1,7 раза при толщине наплавленного слоя 6,0-6,5 мм. Облучение наплавленного слоя электронным пучком приводит к росту микротвердости модифицированного слоя до \approx 13 ГПа, что превышает микротвердость исходной стали в \approx 2,2 раза. Одновременно с этим выявлено увеличение в \approx 1,3 модуля Юнга.

Установлено, что повышение механических и трибологических свойств наплавленного слоя, модифицированного импульсным электронным пучком, обусловлено формированием субмикроразмерной структуры, упрочнение которой вызвано сверхвысокими скоростями нагрева и охлаждения, а также выделением карбида ниобия состава NbC.

Исследование выполнено за счет гранта Российского научного фонда, проект №15-19-00065.