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Abstract. The paper deals with a two-dimensional problem of time-dependent elasticity 
theory, examining waves generated on the top layer interface by the source of normal stresses 
applied to the top layer interface. Here the lower layer interface is free of stresses. The use is 
made of integral transformations to relate displacement transforms with stresses on the top 
layer interface. Exponent power series expansion is obtained for the transform of vertical 
displacements. Analytical approach to each member of the series ensures a precise solution of 
the problem. Displacement field vs. time dependence on the layer interface has been 
calculated. The findings are referred to in the process of ultrasound controlling the layer by 
finite size sensors. 
Keywords: stress; deformation; strengthened layer; surfacing; ultrasound waves. 
 
 
1. Introduction 
Arc surfacing is a procedure applied for wear protection of large-sized products [1, 2]. The 
point of it is coating of the product surface with a wear-resistant overlay via welding electrode 
melting. As a result, product structure and properties become depth gradient. On the interface 
“surfaced layer/substrate”, there are mechanical stresses, arising due to the difference and 
resulting in overlay splitting off. On the other hand, calculated stress-strain state of the 
overlay in static contact loading [3] indicates compressive stresses on these boundaries, 
making it possible to conclude that harder overlays further not varying propagation of stresses 
on the interface of contacting layers. However, the overlays are subject to time-dependent 
contact loading in the process of operation, as a consequence, temporal variation of stress-
strain state is possible. As known, elastic waves appear in a material under such loading and 
might cause both failure and healing of diverse defects [4]. Therefore, studies on specifics of 
wave propagation in multilayered materials have been gaining particular importance. The 
papers are focused on wave propagation in these materials [4 – 8]. The authors [4] investigate 
Rayleigh wave propagation on the interface “solid/fluid”. As found out, it is relevant for 
Rayleigh wave velocity whether there is fluid, and it also depends on the wave trajectory 
curvature, as well on the curvature in the direction perpendicular to the trajectory. The 
scientists [5, 6] offered a general theory of seismic wave field propagation in multilayered 
materials and applied it to wave interference in these materials. Pham Chi Vinh et al. [7] 
explored transmission of elastic waves in the system “functionally gradient material 
layer/elastic layer”. As a result, reflection and transmission coefficients were obtained 
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explicitly; they were in line with findings of numerical methods. The paper [8] studies Love 
wave propagation using Wentzel–Kramers–Brillouin method. The dispersion equation for 
surface Love waves is in ordinary mathematical form. As revealed, coefficients of gradient 
members influence significantly dispersion curves and phase velocities of Love waves.  

Volumetric wave (Lamb wave) transmission in heterogeneous materials is explored in 
papers [9, 10]. A.V. Avershieva et al [9] used numerical and analytical methods to examine 
Lamb wave propagation in elastic isotropic and orthotropic layers. They offered a procedure 
of surface Lamb wave generation with the help of finite elements method and carried out a 
comparative analysis of a fundamental symmetric mode of Lamb waves around the second 
critical velocity, determined numerically and analytically. It has been revealed that the 
growing Poisson’s ratio is associated with the monotonous decline of the relative second 
critical velocity. The layer thickness is of significant importance for dispersion curves 
corresponding with the fundamental symmetric mode. The review of research procedures to 
explore Lamb wave transmission in anisotropic materials is provided in [10]. This paper is 
concerned with six-dimensional Couchy formalism. It helped to form dispersion curves of 
these waves and carry out a comparative study on the results of numerical methods. It is in a 
reasonably good agreement with numerical calculations.  

The main drawback of investigations into elastic wave transmission, as stated in papers 
[4 – 10], is insufficient information about peculiarities of wave transmission in a particular 
layer. A great number of works pay attention to time-dependent load; some of them are of 
significant importance [11 – 12]. The authors [11] applied the method of integral 
transformations to solve two-dimensional problem analytically and identify influence of time-
dependent load on the elastic layer surface in conditions of mixed boundary value problem on 
each interface. As a result, normal stress propagation has been obtained in different instants of 
time and at different distances from the source. Their analysis has pointed out clear stress 
steps on the symmetry axis; and a forward and the first reflected widening wave have a form 
of a single jog. Under further reflection the behavior of stress propagation through the layer 
depth differs from the stepped one due to the distortion wave influence and gradual spreading 
of wave energy in the cross-sectional direction. When moving away from the source there is 
smooth stress propagation. The authors [12] investigated the effect on time-dependent load 
moving on the surface of a homogenous isotropic elastic semis-pace. For uniform motion 
quadrature solutions were obtained and normal motion propagation of the semi-space surface 
was analyzed in diverse ranges of load motion speed.  

Therefore, this work aims at obtaining solutions of dynamic elasticity theory equations, 
which are appropriate for ultrasound control of the layer by finite size sensors.   

 
2. Problem statement 
We consider the motion problem of waves emitted by the source with a finite action 
radius 𝑟𝑟  (Fig. 1). Wave receiver is in the point M at the finite length 𝐿𝐿. We use non-
dimensional variables to write the equations:  
(𝑥̅𝑥, 𝑧𝑧̅) = (𝑥𝑥, 𝑧𝑧) ℎ, 𝑡𝑡̅⁄ = 𝑐𝑐1𝑡𝑡 ℎ, (𝑢𝑢� ,𝑤𝑤�) = (𝑢𝑢,𝑤𝑤) ℎ, (𝜎𝜎�𝑧𝑧,𝜎𝜎�𝑥𝑥, 𝜏𝜏̅) = (𝜎𝜎𝑧𝑧,𝜎𝜎𝑥𝑥, 𝜏𝜏) (𝑐𝑐12𝜌𝜌)⁄⁄⁄  (1) 
 

 
Fig. 1. Statement of the wave propagation problem in the finite thickness layer. 
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For variables (1) generalized Hooke’s law and motion equation are written in the form: 
𝜎𝜎𝑥𝑥 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ (1 − 2𝑐𝑐2) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,𝜎𝜎𝑧𝑧 = (1 − 2𝑐𝑐2) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
, 𝜏𝜏 = 𝑐𝑐2 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�; 

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+ (1 − 𝑐𝑐2) 𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑐𝑐2 𝜕𝜕
2𝑢𝑢
𝜕𝜕𝑧𝑧2

− 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 0, (2) 

𝑐𝑐2 𝜕𝜕
2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ (1 − 𝑐𝑐2) 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝑤𝑤
𝜕𝜕𝑧𝑧2

− 𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

= 0, 

where 𝑐𝑐2 = 𝑐𝑐22

𝑐𝑐12
, 𝑐𝑐12 = 2𝜇𝜇+𝜆𝜆

𝜌𝜌
, 𝑐𝑐22 = 𝜇𝜇

𝜌𝜌
, 𝜆𝜆 and 𝜇𝜇 – Lame parameters, 𝜌𝜌 – material density. The 

conditions on the layer interface are in the form: 

𝑧𝑧 = 1: 𝜎𝜎𝑧𝑧 = −
1
𝜋𝜋

𝛿𝛿
𝛿𝛿2 + 𝑥𝑥2

�𝛩𝛩(𝑡𝑡) −𝛩𝛩(𝑡𝑡 − 𝑇𝑇0)�,𝜎𝜎𝑥𝑥𝑥𝑥 = 0; 
𝑧𝑧 = −1: 𝜎𝜎𝑧𝑧 = 𝜎𝜎𝑥𝑥𝑥𝑥 = 0, (3) 
where 𝛩𝛩 – Heaviside function, 𝑇𝑇0 – signal response time. 
 
3. Results of calculations  
We use the method of finite elements to solve the boundary problem (2), (3). Problem 
parameters are given in Table 1. 

 
Table 1. Problem parameters. 

Symbol Description Value 

d  Source to receiver distance 20 mm 

H  Plate thickness 50,15, 10, 3 mm 

yF  Source force amplitude 100 H 

0t  Pulse duration 2∙ 10-6 s 
E  Young modulus 70 GPa 
ν  Poisson’s ratio 0.33 
x∆  Width of load pulse 1 mm 

 
A fit for vertical loading (3) was made using Fourier method to ease the calculations. 

Longitudinal (a) and time (b) propagation of load from the source is given in Fig. 2. 
 

 
 

 
 

Fig. 2. Load propagation from the source. 
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The calculation data of cross-sectional displacement velocity fields in the point M at a 
plate thickness of 50 mm is given in Fig. 3. Their analysis demonstrates the similarity of these 
plates to Raleigh wave propagation. The situation gets more complicated when layer thinning 
(Fig. 4).  

 

 
 

Fig 3. Calculation data of velocity fields for a 50 mm thick plate. 
 

 

 

 
 

Fig. 4. Calculation data of velocity fields for 15 mm (а), 10 mm (b), 3 mm (c) plates. 
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The observed wave pattern is a result of travelling pulse overlapping and multi-reflected 
waves from the lower boundary. It is noteworthy, that after pulse termination in a 3 mm thick 
plate (Fig. 4c) the displacement velocity gets stabilized in the range of negative values around 
the value of ‒ 0.015, whereas at the distance of 2d from the source there is strengthening 
observed in the range of positive values in the interval 1.5 < t < 2 µs, and declining to 0.01 at 
t  > 2.5 µs. This fact indicates volumetric Lamb waves in the material alongside with the 
surface waves.   

 
4. Results of analytical estimations  
We transform (2) and (3) using integral Laplace transform for time and Fourier method for the 
coordinate. Then (3) is written in the form: 
𝛴𝛴1 = − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝛿𝛿|𝑞𝑞|)�1−𝑒𝑒𝑒𝑒𝑒𝑒(−𝑝𝑝𝑝𝑝)�

𝑝𝑝
,𝑇𝑇1 = 𝑇𝑇−1 = 𝛴𝛴−1 = 0,  (4) 

and the system of equations (2)  

𝑊𝑊′′′′ − (𝑛𝑛12 + 𝑛𝑛22)𝑊𝑊′′ + 𝑛𝑛12𝑛𝑛22𝑊𝑊 = 0,𝑈𝑈 = −
𝑖𝑖

(1 − 𝑏𝑏2)𝑞𝑞𝑛𝑛12
�𝑊𝑊′′′ − �𝑛𝑛22 + 𝑛𝑛12(1 − 𝑏𝑏2)�𝑊𝑊′�, 

𝑛𝑛12 = 𝑞𝑞2 + 𝑝𝑝2,𝑛𝑛22 = 𝑞𝑞2 + 𝑝𝑝2𝑏𝑏2, 𝑏𝑏2 = 1 𝑐𝑐2⁄ , (5) 
𝛴𝛴(𝑧𝑧) = 𝑊𝑊′(𝑧𝑧) − 𝑖𝑖(2𝑐𝑐2 − 1)𝑞𝑞𝑞𝑞(𝑧𝑧), 
𝑇𝑇(𝑧𝑧) = 𝑐𝑐2(𝑈𝑈′(𝑧𝑧) + 𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧)). 

We express stresses on the interfaces with the help of displacement value W on the 
interfaces and its derivatives 
Σ = − 1

𝑏𝑏2(𝑏𝑏2−1)𝑛𝑛12
�(𝑏𝑏2 − 1)𝑊𝑊′′′ − (2(𝑏𝑏2 − 1)𝑛𝑛12 + (𝑏𝑏2 − 1)𝑛𝑛22)𝑊𝑊′�, 

𝑇𝑇 = 𝑖𝑖
𝑏𝑏2(𝑏𝑏2−1)𝑞𝑞𝑛𝑛12

(𝑏𝑏2𝑊𝑊′′ − (2𝑛𝑛22 + 𝑛𝑛12𝑏𝑏2)𝑊𝑊). (6) 
For displacement transform W we obtain a boundary problem: 

𝑊𝑊′′′′ − (𝑛𝑛12 + 𝑛𝑛22)𝑊𝑊′′ + 𝑛𝑛12𝑛𝑛22𝑊𝑊 = 0, 
(2 − 𝑏𝑏2)𝑊𝑊′′′(1) − (2(1 − 𝑏𝑏2)𝑛𝑛12 + (2 − 𝑏𝑏2)𝑛𝑛22)𝑊𝑊′(1) = −𝑏𝑏2(1 − 𝑏𝑏2)𝑛𝑛12𝛴𝛴1, 
(2 − 𝑏𝑏2)𝑊𝑊′′′(−1) − (2(1 − 𝑏𝑏2)𝑛𝑛12 + (2 − 𝑏𝑏2)𝑛𝑛22)𝑊𝑊′(−1) = 0, 
𝑏𝑏2𝑊𝑊′′(1) − (2𝑛𝑛22 − 𝑛𝑛12𝑏𝑏2)𝑊𝑊(1) = 0, 
𝑏𝑏2𝑊𝑊′′(−1) − (2𝑛𝑛22 − 𝑛𝑛12𝑏𝑏2)𝑊𝑊(−1) = 0. (7) 

The solution of the boundary problem (11) is in the form: 
𝑊𝑊(𝑧𝑧) = 𝑆𝑆1 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑛𝑛1𝑧𝑧) + 𝑆𝑆2 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑛𝑛2𝑧𝑧) + 𝐶𝐶1 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛1𝑧𝑧) + 𝐶𝐶2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛2𝑧𝑧).  (8) 

Substituting (8) into (7) results in two systems of algebraic equations: 

�𝑠𝑠11𝑆𝑆1 + 𝑠𝑠12𝑆𝑆2 = 𝑓𝑓,
𝑠𝑠21𝑆𝑆1 + 𝑠𝑠22𝑆𝑆2 = 0; �

𝑐𝑐11𝐶𝐶1 + 𝑐𝑐12𝐶𝐶2 = 𝑓𝑓,
𝑐𝑐21𝐶𝐶1 + 𝑐𝑐22𝐶𝐶2 = 0; 

𝑠𝑠11 = (𝑛𝑛22 + 𝑞𝑞2) 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛1), 𝑠𝑠12 = 2𝑛𝑛1𝑛𝑛2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛2), 
𝑆𝑆21 = 2𝑞𝑞2 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑛𝑛1), 𝑠𝑠22 = (𝑛𝑛22 + 𝑞𝑞2) 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑛𝑛2), (9) 
𝑐𝑐11 = (𝑛𝑛22 + 𝑞𝑞2) 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑛𝑛1), 𝑐𝑐12 = 2𝑛𝑛1𝑛𝑛2 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑛𝑛2),   
𝑐𝑐21 = 2𝑞𝑞2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛1),   𝑐𝑐22 = (𝑛𝑛22 + 𝑞𝑞2) 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑛𝑛2),𝑓𝑓 = −𝑏𝑏2𝑛𝑛1 𝛴𝛴1 2.⁄  

Solution (9): 

𝑆𝑆1 =
𝑏𝑏2𝑛𝑛1(𝑛𝑛22 + 𝑞𝑞2) sinh(𝑛𝑛2)

2Δ𝑠𝑠
Σ1, 𝑆𝑆2 = −

𝑏𝑏2𝑛𝑛1𝑞𝑞2 sinh(𝑛𝑛1)
Δ𝑠𝑠

Σ1, 

𝐶𝐶1 = 𝑏𝑏2𝑛𝑛1�𝑛𝑛22+𝑞𝑞2� cosh(𝑛𝑛2)
2Δ𝑐𝑐

Σ1,𝐶𝐶2 = −𝑏𝑏2𝑛𝑛1𝑞𝑞2 cosh(𝑛𝑛1)
Δ𝑐𝑐

Σ1, (10) 
Δ𝑠𝑠 = (𝑛𝑛22 + 𝑞𝑞2)2 cosh(𝑛𝑛1) sinh(𝑛𝑛2) − 4𝑛𝑛1𝑛𝑛2𝑞𝑞2 cosh(𝑛𝑛2) sinh(𝑛𝑛1), 
Δ𝑐𝑐 = (𝑛𝑛22 + 𝑞𝑞2)2 cosh(𝑛𝑛2) sinh(𝑛𝑛1) − 4𝑛𝑛1𝑛𝑛2𝑞𝑞2 cosh(𝑛𝑛1) sinh(𝑛𝑛2). 

Using (10) and (8) we write the expression for W(1), which relates stress transforms to 
those of displacement on the top layer interface: 
𝑊𝑊 = 𝑏𝑏2𝑛𝑛1�𝑛𝑛22−𝑞𝑞2�

2
�cosh𝑛𝑛1 cosh𝑛𝑛2

Δ𝑐𝑐
+ sinh𝑛𝑛1 sinh𝑛𝑛2

Δ𝑠𝑠
� Σ1. (11) 
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Taking into account (3) the formula (11) is given in the form: 
𝑊𝑊 = −𝑏𝑏4𝑝𝑝𝑛𝑛1𝑒𝑒𝑒𝑒𝑒𝑒(−𝛿𝛿|𝑞𝑞|)�1−𝑒𝑒𝑒𝑒𝑒𝑒(−𝑝𝑝𝑝𝑝)�

2
𝐿𝐿,  

𝐿𝐿 = �𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑛𝑛1 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑛𝑛2
𝛥𝛥𝐶𝐶

+ 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑛𝑛1 𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑛𝑛2
𝛥𝛥𝑆𝑆

�. (12) 
To compare with the numerical results a time-correlation of cross-sectional 

displacements on the upper interface is required at distances 𝑥𝑥 = 𝑙𝑙:𝑤𝑤(𝑙𝑙,ℎ, 𝑡𝑡) =  𝛹𝛹(𝑡𝑡). For this 
purpose, we transform denominators (11) as follows: 
𝛥𝛥𝑆𝑆 =

𝑅𝑅1
4
𝑒𝑒𝑒𝑒𝑒𝑒(𝑛𝑛1 + 𝑛𝑛2) (1 − 𝑞𝑞1),𝛥𝛥𝐶𝐶 =

𝑅𝑅1
4
𝑒𝑒𝑒𝑒𝑒𝑒(𝑛𝑛1 + 𝑛𝑛2) (1 − 𝑞𝑞2), 

𝑅𝑅1 = (𝑛𝑛22 + 𝑞𝑞2)2 − 4𝑞𝑞2𝑛𝑛1𝑛𝑛2,𝑅𝑅2 = (𝑛𝑛22 + 𝑞𝑞2)2 + 4𝑞𝑞2𝑛𝑛1𝑛𝑛2, (13) 
𝑞𝑞1 = 𝐴𝐴 + 𝛾𝛾𝛾𝛾, 𝑞𝑞2 = 𝐴𝐴 − 𝛾𝛾𝛾𝛾, 
𝐴𝐴 = 𝑒𝑒𝑒𝑒𝑒𝑒�−2(𝑛𝑛1 + 𝑛𝑛2)�,𝐵𝐵 = 𝑒𝑒𝑒𝑒𝑒𝑒(−2𝑛𝑛2) − 𝑒𝑒𝑒𝑒𝑒𝑒(−2𝑛𝑛1), 𝛾𝛾 = 𝑅𝑅2 𝑅𝑅1⁄ . 

We obtain for L: 

𝐿𝐿 =
2
𝑅𝑅1

(1 + 𝐹𝐹1 + 𝐹𝐹2+. . . ), 

𝐹𝐹1 = 𝛾𝛾(𝛾𝛾 − 1)𝑒𝑒𝑒𝑒𝑒𝑒(−4𝑛𝑛1) + 𝛾𝛾(𝛾𝛾 + 1)𝑒𝑒𝑒𝑒𝑒𝑒(−4𝑛𝑛2) − 2(𝛾𝛾2 − 1)𝑒𝑒𝑒𝑒𝑒𝑒(−2𝑛𝑛1 − 2𝑛𝑛2), (14) 
𝐹𝐹2 = −𝛾𝛾3 𝑒𝑒𝑒𝑒𝑒𝑒(−8𝑛𝑛1) + 𝛾𝛾3 𝑒𝑒𝑒𝑒𝑒𝑒(−8𝑛𝑛2) − 2(4𝛾𝛾2 − 1) 𝑒𝑒𝑒𝑒𝑒𝑒(−4𝑛𝑛1 − 4𝑛𝑛2) +
2𝛾𝛾(𝛾𝛾2 + 2𝛾𝛾 − 1) 𝑒𝑒𝑒𝑒𝑒𝑒(−6𝑛𝑛1 − 2𝑛𝑛2) − 2𝛾𝛾(𝛾𝛾2 − 2𝛾𝛾 − 1) 𝑒𝑒𝑒𝑒𝑒𝑒(−2𝑛𝑛1 − 6𝑛𝑛2).  

We substitute obtained expressions into 𝑊𝑊1. It is proper to consider velocities instead of 
displacements. For velocity transform 𝑊̇𝑊 = 𝑝𝑝𝑝𝑝 we have: 
𝑊̇𝑊 = −𝑏𝑏4𝑝𝑝2𝑛𝑛1𝑒𝑒𝑒𝑒𝑒𝑒(−𝛿𝛿|𝑞𝑞|)�1−𝑒𝑒𝑒𝑒𝑒𝑒(−𝑝𝑝𝑝𝑝)�

𝑅𝑅1
(1 + 𝐹𝐹1 + 𝐹𝐹2). (15) 

Finally, we obtain a sum total, where the first summand is the time, when waves 
propagating along the surface arrive at the observation point, the second one (F2) is the time, 
when single-reflected waves from the back surface arrive at the observation point; the third 
summand (F3) is the time of double-reflected waves arrival. The general view of a summand 
in (15) can be given in the form: 
𝑊𝑊𝐿𝐿𝐿𝐿(𝑞𝑞,𝑝𝑝) = 1

𝑝𝑝
𝛷𝛷(𝑝𝑝, 𝑞𝑞)𝑒𝑒𝑒𝑒𝑒𝑒(−𝛿𝛿|𝑞𝑞| − 𝛼𝛼𝑛𝑛1 − 𝛽𝛽𝑛𝑛2 − 𝜏𝜏𝜏𝜏) = 𝜎𝜎0𝐿𝐿𝐿𝐿(𝑝𝑝, 𝑞𝑞)𝑒𝑒𝑒𝑒𝑒𝑒(−𝛿𝛿|𝑞𝑞|). (16) 

Here 𝑛𝑛1,2 are homogenous first-order functions, 𝛷𝛷 is of the zero-order, 𝜏𝜏 can have a zero 
or 𝑇𝑇 value. Transforms like (16) are found in more simple dynamic problems, when one of the 
coefficients 𝛼𝛼 or 𝛽𝛽 is equal to zero. When both of them are not equal to zero, these cases are 
considered more complicated. The required correlation 𝑤̇𝑤(𝑡𝑡) is written as a sum total of 
original functions, each of them is obtained using a double inverse transform of expressions 
like (16). For inverse transform we apply the procedure proposed in [13]. We determine 
function (𝐿𝐿 – image of the required function), as in [14]: 
𝜎𝜎𝐿𝐿(𝑝𝑝, 𝑠𝑠) = 1

𝜋𝜋
𝑅𝑅𝑅𝑅 ∫ 𝜎𝜎0𝐿𝐿𝐿𝐿(𝑝𝑝, 𝑞𝑞) 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑠𝑠𝑠𝑠)𝑑𝑑𝑑𝑑; 𝑠𝑠 = 𝛿𝛿 + 𝑖𝑖𝑖𝑖∞

0 . (17) 
In (17) we replace 𝑞𝑞 = 𝜉𝜉𝜉𝜉. 

𝜎𝜎𝐿𝐿(𝑝𝑝, 𝑠𝑠) = 1
𝜋𝜋
𝑅𝑅𝑅𝑅 ∫ 𝛷𝛷∞

0 (𝜉𝜉) 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑝𝑝(𝛼𝛼𝑚𝑚1 + 𝛽𝛽𝑚𝑚2 + 𝑠𝑠𝑠𝑠 + 𝜏𝜏)� 𝑑𝑑𝑑𝑑, 

𝑚𝑚1 = �1 + 𝜉𝜉2,𝑚𝑚2 = �𝑏𝑏2 + 𝜉𝜉2, at 𝑅𝑅𝑅𝑅𝑅𝑅 > 0, 𝐼𝐼𝐼𝐼𝐼𝐼 = 0. (18) 
We introduce a new variable t according to the formula: 

𝑡𝑡 = 𝛼𝛼𝑚𝑚1 + 𝛽𝛽𝑚𝑚2 + 𝑠𝑠𝑠𝑠 − 𝛼𝛼 − 𝛽𝛽𝛽𝛽. (19) 
Function 𝑡𝑡(𝜉𝜉) increases monotonically, since the derivative is positive 

𝑡𝑡′ = (𝜉𝜉′)−1 = 𝛼𝛼𝑚𝑚1
′ + 𝛽𝛽𝑚𝑚2

′ + 𝑠𝑠 > 0(𝜉𝜉 > 0). (20) 
Therefore, the equation (19) is assumed as a single-valued function 𝜉𝜉(𝑡𝑡, 𝑠𝑠). Using in 

(18) the variable 𝑡𝑡 we obtain: 
𝜎𝜎𝐿𝐿(𝑝𝑝, 𝑠𝑠) = 1

𝜋𝜋
𝑅𝑅𝑅𝑅 �𝑒𝑒𝑒𝑒𝑒𝑒�−𝑝𝑝(𝜏𝜏 + 𝛼𝛼 + 𝑏𝑏𝑏𝑏)� ∫ 𝛷𝛷�𝜉𝜉(𝑡𝑡,𝑠𝑠)�

𝛼𝛼𝑚𝑚1
′+𝛽𝛽𝑚𝑚2

′+𝑠𝑠
𝑒𝑒𝑒𝑒𝑒𝑒(−𝑝𝑝𝑝𝑝)𝑑𝑑𝑑𝑑∞

0 �, 

𝑚𝑚1 = �1 + 𝜉𝜉2,𝑚𝑚2 = �𝑏𝑏2 + 𝜉𝜉2;  𝑚𝑚1,2 > 0 𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅 > 0, 𝐼𝐼𝐼𝐼𝐼𝐼 = 0 (21) 
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Using the displacement theorem of original we get Laplace transform of the function in 
the right part (21): 
𝜎𝜎(𝑡𝑡, 𝑠𝑠) = 1

𝜋𝜋
𝑅𝑅𝑅𝑅 �Φ�𝜉𝜉(𝑡𝑡−(𝜏𝜏+𝛼𝛼+𝑏𝑏𝑏𝑏),𝑠𝑠)�

𝛼𝛼𝑚𝑚1
′+𝛽𝛽𝑚𝑚2

′+𝑠𝑠
� , 𝑠𝑠 = 𝛿𝛿 + 𝑖𝑖𝑖𝑖, 𝑥𝑥 > 0. (22) 

The formula (22) provides an expression for the reversal double Fourier – Laplace 
transform and is a required function of 𝑡𝑡, 𝑥𝑥. We consider the first summand in (19) in the 
form: 
𝑊̇𝑊0 = −𝑏𝑏4𝑝𝑝2𝑛𝑛1𝑒𝑒𝑒𝑒𝑒𝑒 (−𝛿𝛿|𝑞𝑞|)(1−𝑒𝑒𝑒𝑒𝑒𝑒(−𝑝𝑝𝑝𝑝))

𝑅𝑅1
. (23) 

To compare (23) with (16) we have 𝛼𝛼 = 𝛽𝛽 = 0, and for Φ0  
𝛷𝛷0(𝜉𝜉) = −𝑏𝑏4𝑚𝑚1(𝜉𝜉)

𝑅𝑅1(𝜉𝜉) ;  𝑅𝑅1(𝜉𝜉) = (𝑚𝑚2
2 + 𝜉𝜉2)2 − 4𝜉𝜉2𝑚𝑚1𝑚𝑚2;  𝜉𝜉 = 𝑡𝑡 𝑠𝑠⁄ . (24) 

Consequently, 
𝑤̇𝑤0(𝑡𝑡, 𝑠𝑠) = 1

𝜋𝜋
𝑅𝑅𝑅𝑅 1

𝑠𝑠
�Φ�𝜉𝜉(𝑡𝑡, 𝑠𝑠)� − Φ(𝜉𝜉(𝑡𝑡 − 𝜏𝜏), 𝑠𝑠)�. (25) 

Using the formula (25), time correlation of the transverse velocity ( ),(0 stw ) is plotted 
(Fig. 5). The dependence above is similar to that given in Fig. 3 for a 50 mm thick plate, 
making it possible to conclude that travelling waves will be registered in thick plates at the 
distances of approximately 20 mm. 
 

 
 

Fig. 5. Transverse velocity ( ),(0 stw ) vs. time dependence  
at 𝑥𝑥 = 6;  𝑏𝑏 =  1.7;  𝜏𝜏 =  1;  𝛿𝛿 =  0.1. 

 
To take into account reflected waves the second summand in (15) is written in the form 

𝑊̇𝑊1
𝐿𝐿𝐿𝐿 = 𝑊̇𝑊0

𝐿𝐿𝐿𝐿𝐿𝐿1  it can be presented as three summands provided that 𝑇𝑇 →  ∞ 
𝑊̇𝑊11

𝐿𝐿𝐿𝐿 = −𝑏𝑏4𝑝𝑝2𝑛𝑛1𝛾𝛾(𝛾𝛾−1)𝑒𝑒𝑒𝑒𝑒𝑒(−𝛿𝛿|𝑞𝑞|−4𝑛𝑛1)
𝑅𝑅1

, 

𝑊̇𝑊12
𝐿𝐿𝐿𝐿 = −𝑏𝑏4𝑝𝑝2𝑛𝑛1𝛾𝛾(𝛾𝛾+1)𝑒𝑒𝑒𝑒𝑒𝑒(−𝛿𝛿|𝑞𝑞|−4𝑛𝑛2)

𝑅𝑅1
, (26) 

𝑊̇𝑊13
𝐿𝐿𝐿𝐿 =

2𝑏𝑏4𝑝𝑝2𝑛𝑛1(𝛾𝛾2 − 1)𝑒𝑒𝑒𝑒𝑒𝑒(−𝛿𝛿|𝑞𝑞| − 2𝑛𝑛1 − 2𝑛𝑛2)
𝑅𝑅1

. 

Therefore, for functions 𝛷𝛷 we will have with regard to (14) and replacement 𝑞𝑞 = 𝜉𝜉𝜉𝜉  

𝛷𝛷11𝐿𝐿𝐿𝐿 = −8𝑏𝑏4𝜉𝜉2𝑚𝑚1
2𝑚𝑚2𝑅𝑅2(𝜉𝜉)

𝑅𝑅1
3(𝜉𝜉) ,𝛷𝛷12𝐿𝐿𝐿𝐿 = −2𝑏𝑏4𝑚𝑚1�𝑚𝑚2

2+𝜉𝜉2�
2
𝑅𝑅2(𝜉𝜉)

𝑅𝑅1
3(𝜉𝜉) , 

𝛷𝛷13𝐿𝐿𝐿𝐿 = 32𝑏𝑏4𝜉𝜉2𝑚𝑚1
2𝑚𝑚2�𝑚𝑚2

2+𝜉𝜉2�
2

𝑅𝑅1
3(𝜉𝜉) , (27) 

𝑅𝑅1(𝜉𝜉) = (𝑚𝑚2
2 + 𝜉𝜉2)2 − 4𝜉𝜉2𝑚𝑚1𝑚𝑚2,  𝑅𝑅2(𝜉𝜉) = (𝑚𝑚2

2 + 𝜉𝜉2)2 + 4𝜉𝜉2𝑚𝑚1𝑚𝑚2.  
For each function 𝛷𝛷1𝑘𝑘(𝑘𝑘 = 1,2,3) its own dependence is to be found out 𝜉𝜉𝑘𝑘(𝑡𝑡, 𝑠𝑠), and 

for them an equation like (15) is to be obtained. This equation in the general case can be 

),( stw  

t 
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reduced to a biquadratic algebraic equation with complex coefficients, this equation is solved 
numerically. In the general case of four solutions we select those, which agree with (15), and 
in the rest – those, which can satisfy with the correlation 𝑅𝑅𝑅𝑅(𝜉𝜉(𝑡𝑡)) > 0, 𝐼𝐼𝐼𝐼(𝜉𝜉(𝑡𝑡)) < 0. Using 
(22) and (26) at 𝜏𝜏 =  0 we write formulae for single-reflected waves  

𝛹𝛹11(𝑡𝑡) =
1
𝜋𝜋
𝑅𝑅𝑅𝑅 �

𝛷𝛷11(𝜉𝜉)𝑚𝑚1(𝜉𝜉)
2 + 𝑠𝑠𝑠𝑠1(𝜉𝜉) � , 𝜉𝜉 = 𝜉𝜉1(𝑡𝑡 − 4), 

𝛹𝛹12(𝑡𝑡) = 1
𝜋𝜋
𝑅𝑅𝑅𝑅 �𝛷𝛷12(𝜉𝜉)𝑚𝑚2(𝜉𝜉)

2+𝑠𝑠𝑠𝑠2(𝜉𝜉) � , 𝜉𝜉 = 𝜉𝜉2(𝑡𝑡 − 4𝑏𝑏), (28) 

𝛹𝛹13(𝑡𝑡) =
1
𝜋𝜋
𝑅𝑅𝑅𝑅 �

𝛷𝛷13(𝜉𝜉)𝑚𝑚1(𝜉𝜉)𝑚𝑚2(𝜉𝜉)
2�𝑚𝑚1(𝜉𝜉) + 𝑚𝑚2(𝜉𝜉)� + 𝑠𝑠𝑠𝑠1(𝜉𝜉)𝑚𝑚2(𝜉𝜉)

� , 𝜉𝜉 = 𝜉𝜉3(𝑡𝑡 − 2 − 2𝑏𝑏). 

For the resultant signal we obtain 𝛹𝛹1(𝑡𝑡) = 𝛹𝛹11(𝑡𝑡) + 𝛹𝛹12(𝑡𝑡) + 𝛹𝛹13(𝑡𝑡). As long as 
𝜏𝜏 ≠  0, we have 
𝑤̇𝑤1(𝑡𝑡, 𝑥𝑥, 𝛿𝛿, 𝜏𝜏) = 𝛹𝛹1(𝑡𝑡) −𝛹𝛹1(𝑡𝑡 − 𝜏𝜏). (29) 

Therefore, analytical solutions have been obtained and can be used to analyze wave 
propagation in the system “source-receiver” of the finite sizes. For travelling waves they were 
compared with the numerical results, principal agreement of calculations with analytical 
solutions was identified for thick plates.   
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