Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет»

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

ЕСТЕСТВЕННЫЕ И ТЕХНИЧЕСКИЕ НАУКИ

ЧАСТЬ ІІ

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых 16 – 18 мая 2017 г.

выпуск 21

Под общей редакцией профессора М.В. Темлянцева

Новокузнецк 2017

Редакционная коллегия:

д-р техн. наук, профессор М.В. Темлянцев, д-р хим. наук, профессор В.Ф. Горюшкин, д-р физ.- мат. наук, профессор В.Е. Громов, д-р геол. - минерал. наук, профессор Я.М. Гутак, д-р техн. наук, профессор В.Н. Фрянов, канд. техн. наук, доцент В.В. Чаплыгин, д-р техн. наук, профессор Г.В. Галевский, канд. техн. наук, доцент С.В. Фейлер, д-р техн. наук, доцент А.Р. Фастыковский, д-р техн. наук, профессор Н.А. Козырев, канд. техн. наук, доцент С.Г. Коротков

H 340

Наука и молодежь: проблемы, поиски, решения: труды Всероссийской научной конференции студентов, аспирантов и молодых ученых / Сиб. гос. индустр. ун-т; под общ. ред. М.В. Темлянцева. — Новокузнецк: Изд. центр СибГИУ, 2017. - Вып. 21. - Ч. II. Естественные и технические науки. —440 с., ил.- 113, таб.- 77.

Представлены труды Всероссийской научной конференции студентов, аспирантов и молодых ученых по результатам научно-исследовательских работ. Вторая часть сборника посвящена актуальным вопросам в области естественных и технических наук: химии, физики, перспективных технологий разработки месторождений полезных ископаемых, металлургических процессов, технологий, материалов и оборудования, экологии, безопасности, рационального использования природных ресурсов.

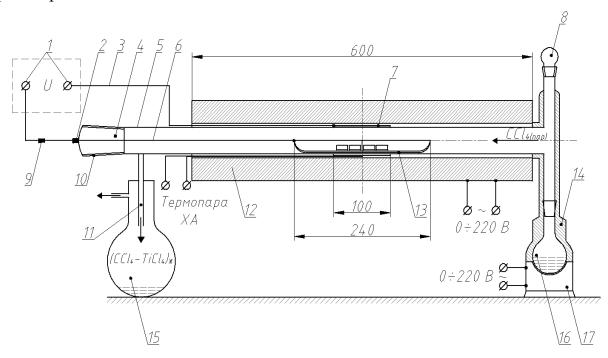
Материалы сборника представляют интерес для научных и научнотехнических работников, преподавателей, аспирантов и студентов вузов.

АКТИВАЦИЯ РЕАКЦИИ ОКИСЛЕНИЯ ТИТАНА СТАТИЧЕСКИМ ЭЛЕКТРИЧЕСКИМ ЗАРЯДОМ, СООБЩАЕМЫМ МЕТАЛЛУ ОТ ВНЕШНЕГО ИСТОЧНИКА

Зайцев Н.С., Бендре Ю.В., Зенцова С.В. Научный руководитель: д-р хим. наук, профессор Горюшкин В.Ф.

Сибирский государственный индустриальный университет, г. Новокузнецк, e-mail: koax@sibsiu.ru

Гравиметрическим методом изучена скорость коррозии технически чистого титана ВТ1-0 и титанового сплава ВТ6 в потоке пара тетрахлорида углерода при температуре 673 К в реакторе с электрическим конденсатором, в котором испытуемые металлические образцы являются составной частью внутренней обкладки. В опытах изменяли напряжение на конденсаторе в реакторе от 400 В до 7680 В и полярность электрического заряда внутренней обкладки. Результаты экспериментов показывают, что скорость реакции $\mathrm{Ti}_{\mathrm{TB}} + \mathrm{CCl}_{4\mathrm{пар}} \to \mathrm{C}_{\mathrm{TB}} + \mathrm{TiCl}_{4\mathrm{пар}}$ в зависимости от подводимого напряжения на конденсатор в интервале $6000 \div 7680$ В увеличивается, в среднем, в 2,0 \pm 0,5 раза. Проявилась тенденция к росту коэффициента увеличения скорости с увеличением подводимого напряжения. Эффект увеличения скорости окисления титана хлорагентом может быть полезным при переработке титанового лома.


Ключевые слова: химический реактор с электрическим конденсатором, технически чистый титан BT1-0 и титановый сплав BT6, тетрахлорид углерода, физическое воздействие на реагенты, положительный или отрицательный заряд на металле, величина напряжения на конденсаторе реактора, массовый показатель газовой коррозии, коэффициент увеличения массового показателя газовой коррозии.

В работе [1] нами с целью изучения влияния знака и величины электрического заряда, подводимого от внешнего источника к металлическим образцам, на скорость реакции окисления титана паром CCl_4 :

$$Ti_{TB} + CCl_{4\pi ap} \rightarrow C_{TB} + TiCl_{4\pi ap},$$
 (1)

предложена конструкция химического реактора (рисунок 1) с электрическим цилиндрическим конденсатором, в котором испытуемые образцы являются составной частью внутренней обкладки. Там же [1] измерена электрическая ёмкость конденсатора в реакторе, заполненном паром CCl_4 и рассчитаны энергия конденсатора и объёмная плотность энергии электрического поля в диэлектрике (CCl_4) между пластинами. При этом получено, что при напряжении постоянного тока на конденсаторе ~ 5000 В, поверхности титана, толщиной 1 нм, за счёт заряда сообщается такая же энергия, как при нагревании на 10 К. Таким образом, можно ожидать изменений в механизме и ки-

нетике протекания реакции (1) при высоких напряжениях на конденсаторе в реакторе.

1 – клеммы для подключения цифрового L,C,R – измерителя E – 7-12 и регулируемого напряжения от внешнего источника постоянного тока; 2 – тефлоновый уплотнитель; 3 – нихромовая проволока (дл. 1500 мм, диам. 1,6 мм); 4 пробка (диам. 45 мм) выхода реактора; 5 – герметичный кварцевый реактор (дл. 1000 мм, диам. 44мм); 6 – нихромовый стержень (дл. 720 мм, диам. 1,6 мм); 7 – латунный цилиндр на внешней поверхности реактора – внешняя обкладка конденсатора; 8 – пробка выхода реактора для заливки жидкого CCl₄ в колбу-испаритель; 9 – электрический разъём; 10 – шлиф (диам. 45 мм) выхода реактора с герметичной пробкой (4); 11 – трубка для отвода конденсата и пара из реактора (дл. 320 мм, диам. 10 мм); 12 – электрическая печь сопротивления; 13 – кварцевая лодочка (дл. 240 мм, шир. 32 мм) с металлическими образцами на подложке из углеродной ленты – внутренняя обкладка конденсатора; 14 – асбестовый шнур (диам. 10 мм); 15 – колба-буферная ёмкость для сбора конденсата и обеспечения герметичности реактора при его охлаждении (объём 2000 мл); 16 – круглодонная колба-испаритель (объём 500 мл) с жидким CCl₄; 17 – электрическая плитка

Рисунок 1 - Схема установки для изучения механизма и кинетики азовой коррозии металлов в потоке пара CCl_4 в герметичном реакторе с электрическим конденсатором

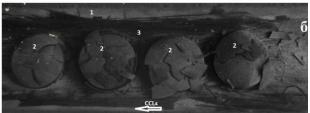
Настоящая работа посвящена изучению влияния электрического заряда, отличающегося знаком и величиной, сообщаемого металлу извне, на скорость газовой коррозии титана BT1-0 или его сплава BT6 при постоянных температуре и времени выдержки в потоке пара тетрахлорида углерода.

Материалы и методика эксперимента. В исследованиях использовали образцы в виде дисков диам. 18-20 и толщиной 3-6 мм как из технически чистого титана BT1-0 так и из титанового сплава BT6. Это объясняется тем, что в [2,3] нами установлено, что показатели газовой коррозии титана и данного сплава в паре CCl₄ при одинаковых условиях в области доверительных интервалов совпадают.

Поскольку в результате настоящей работы предстояло сравнить скорость коррозии титана в опытах с сообщением металлу электричесекого заряда и в обычных условиях (без сообщения заряда), то установка, партия образцов сплава ВТ6 (\mathbb{N}° 2), методика подготовки поверхности образцов, партия хлорагента были идентичными работам [2,3]. Добавили для исследования новые партии образцов титана ВТ1-0 (\mathbb{N}° 5) и сплава ВТ6 (\mathbb{N}° 3). Результаты рентгеноспектрального анализа образцов металлов приведены в таблице 1 (последовательный рентгенофлуоресцентный волнодисперсионный спектрометр Shimadzu XRF-1800)¹.

Таблица 1 - Результаты рентгеноспектрального анализа образцов титана

Металл,		Массовая доля элементов, %				
№ партии	Ti	Al	Si	Fe	Ni	Cr
ВТ1-0, партия 5	99,32	0,45	0,00	0,094	0,021	0,041
ВТ6, партия 2	92,77	6,73	0,031	0,11	0,026	0,24
ВТ6, партия 3	93,23	6,30	0,15	0,22	Нет	Нет


Поверхность металла шлифовали на наждачной бумаге 4 - H (ГОСТ 13344-79). Одинаковость шлифования контролировали микроскопом МБС - 9 при увеличении до $50 \div 100$. В качестве хлорагента применили тетрахлорид углерода «ХЧ» (содержание примесей менее 0,01 масс. %).

Установку (рис. 1) собирали в лабораторном вытяжном шкафу. Во время опыта пар-реагент вводится с постоянной скоростью в реактор (5), где подвергается превращению с определённой степенью. Сконденсировавшийся на выходе из реактора избыток реагента, в растворе с жидким продуктом реакции TiCl₄, выводится из реактора с противоположной стороны в сборник конденсата (15), а образующийся при испарении раствора в сборнике конденсата при комнатной температуре пар — в утилизирующую систему. В конструкции реактора создан электрический конденсатор. Первой (внутреней) обкладкой (13) конденсатора являются четыре испытуемых металлических образца вместе с углеродной лентой, помещённые внутрь реактора в кварцевой лодочке (длина 240 мм, ширина 32 мм). Полосой углеродной ленты (рис. 2а) марки ЛУ–П/0,1-50, толщиной 0,1 мм (производство ООО «Аргон», г. Балаково) полностью устилали внутреннюю поверхность лодочки.

8

¹ Рентгеноспектральный анализ образцов выполнен с использованием аналитического оборудования Центра коллективного пользования «Материаловедение» при Сибирском государственном индустриальном университете сотрудниками Центра

1 — кварцевая лодочка; 2 - образцы металла; 3 — подложка из углеродной ленты; стрелками показан вектор потока пара CCl₄

Рисунок 2 - Образцы титанового сплава ВТ6 (партия № 2, опыт № 15) перед помещением лодочки в реактор (а) и после коррозии в потоке пара ССІ₄ при 673К, напряжении на конденсаторе 6000В и отрицательном заряде на металле (б)

Сама углеродная лента приводится в электрический контакт с нихромовым проводником (6) в виде стержня, который выводится из реактора через отверстие в пробке реактора с уплотнителем (2) и подсоединяется к разъёмному контакту (9). Проводник (6) соединён не только с углеродной лентой, но и с самой лодочкой и поэтому одновременно является инструментом для помещения лодочки в реактор и для её извлечения. Вторая обкладка (7) конденсатора (внешняя) — это цилиндр из латунной фольги, толщиной 0,15 мм, обёрнутой в один слой вокруг реактора по его наружной поверхности (длина образующей цилиндра — 100 мм). Для сообщения заряда внешней обкладке служит нихромовый проводник (3), находящийся в электрическом контакте с латунной фольгой. В соответствии с формой внешней обкладки созданный конденсатор следует отнести к цилиндрическим. В пространстве между обкладками во время опыта — многослойный диэлектрик, состоящий из кварцевой стенки реактора (толщина 2 мм.) и внутри реактора - слоя параокислителя (ССІ₄), разбавленного паром продукта реакции (TiCl₄).

Для сообщения образцам металла в лодочке и латунному цилиндру (обкладкам конденсатора) электрического заряда использовали метод контакта обкладок с внешними электродами, находящимися под определённым напряжением постоянного тока. С этой целью был изготовлен источник регулируемого выпрямленного напряжения величиной 0 ÷ 8000В, состоящий из стабилизатора напряжения СНВТ – 10000/1 Hybrid, автотрансформатора ЛАТР TDGC2-2, повышающего трансформатора НОМ 6 (100/6000 В), однофазного двухполупериодного диодного выпрямителя. Для сглаживания полученного выпрямленного напряжения к выходу источника подключали фильтр на базе пяти конденсаторов КБГ-П (2 мкФ, 2000В). Измерение полученного постоянного напряжения производилось при помощи мультиметра 43104, подключённого к выходу источника при помощи делителя напряжения (8 сопротивлений на 6,8 МОм).

Испытания проводили при постоянной температуре 673 К и времени выдержки 4 ч. В [2] было установлено, что при данной температуре реакция

между титаном и CCl₄ идёт с образованием именно тех продуктов, которые записаны в уравнении (1). В начале опыта одновременно подавали напряжение на плитку (17) колбы-испарителя (16), заполненной на $\frac{1}{2}$ жидким тетрахлоридом углерода и на печь (12) реактора, обеспечивающее повышение температуры реактора со скоростью ~ 6 К/мин. Через ~ 1ч ССІ₄ в колбеиспарителе закипал, о чём свидетельствовала обильная капельная конденсация (> 20 кап/мин) паров на выходе из реактора [отводная трубка (11)]. После этого напряжение, подаваемое на плитку (17), уменьшали до уровня, обеспечивающего постоянный режим испарения с поверхности жидкости. Постоянный режим испарения поддерживали ручной регулировкой напряжения на плитке и контролировали по скорости каплепадения конденсата из отводной трубки (11) (5 \pm 2 кап/мин, что эквивалентно 0,08 \pm 0,03 мл/мин). Напряжение на печи (12) также поддерживали постоянным, во взаимосвязи с контролем температуры в горячей зоне реактора с помощью термопары ХА на уровне 673 ± 2 К. Образцы металла на углеродной ленте в кварцевой лодочке (13) помещали через выход реактора со шлифом (10), вынимая для этого на короткое время кварцевую пробку (4), в нагретый до требуемой температуры реактор, с уже отрегулированным потоком пара CCl₄. Плотность потока пара CCl₄ через горячую зону реактора в течение опыта составляла 3.0 ± 0.2 мл/см²·мин. При этом CCl₄ подавали в (5-6)-кратном избытке по количеству вещества, по сравнению со стехиометрией реакции (1).

Перед сообщением электрических зарядов на обкладки, с целью контроля качества электрических контактов и отсутствия короткого замыкания, измеряли электрическую ёмкость и электропроводность конденсатора вместе с подводящими проводниками (3), (6) с помощью цифрового L, C, R — измерителя E 7-12, присоединительное устройство которого подключали к контактам (1). В среднем, электрическая ёмкость составляла 38 пФ, а электропроводность — 0.02 мC.

Затем присоединительное устройство цифрового L, C, R – измерителя отключали от контактов (1) и на их место подключали изолированные медные провода, идущие от выходных клемм (положительной и отрицательной) источника регулируемого выпрямленного напряжения. При этом, в соответствии с планом эксперимента, устанавливали как определённую полярность обкладок, так и величину подключаемого выпрямленного напряжения U. После подключения полюсов источника постоянного напряжения U, В к обкладкам конденсатора, каждая из них заряжается до величины заряда Q, Кл (+Q или - Q).

Оценка величины заряда Q не входила в задачу настоящего этапа работы. Эффект от сообщения металлу электрического заряда оценивали в зависимости от величины напряжения U, подключаемого к конденсатору и полюса (положительного или отрицательного) подводимого к лодочке с образцами (+U или -U).

В течение 4 ч опыта поддерживали постоянными температуру реакто-

ра, скорость каплевыделения конденсата из отводной трубки (11) и величину напряжения U на обкладках конденсатора в реакторе. Затем печь реактора и плитку колбы-испарителя выключали, образцы охлаждали вместе с печью до комнатной температуры, далее отключали от клемм (1) источник выпрямленного напряжения, лодочку с образцами извлекали из реактора, образцы помещали в бюксы и в эксикатор для сохранения перед дальнейшими действиями с ними.

Измеряемыми параметрами образцов являлись: линейные размеры и масса перед помещением в реактор, линейные размеры и масса после опыта и механического удаления с их поверхности твёрдого продукта реакции (1) — пористой незащитной плёнки, состоящей [2] преимущественно из рентгеноаморфного углерода. Механическое удаление — лёгкая, без особых усилий очистка поверхности образца хирургическим скальпелем и лезвием опасной бритвы.

Отметим, что в исследованиях [2,3] заранее, для соблюдения условий осуществления химической реакции, одинаковых с настоящими опытами, образцы металла в лодочке всегда размещали на полосе углеродной ленты, которую, однако, использовали исключительно как подложку.

Результаты и обсуждение. Результаты газовой коррозии технически чистого титана ВТ1-0 и сплава ВТ6 в тетрахлориде углерода при температуре 673К (среднеарифметические значения K_m^- и доверительные интервалы) в зависимости от величины напряжения U в опыте и знака подводимого к образцам в лодочке извне электрического потенциала приведены в табл. 2. Массовый показатель коррозии (K_m^-) рассчитывали по формуле:

$$K_m^- = \frac{\Delta m}{S \cdot t},\tag{2}$$

где Δm - уменьшение массы металла, г; S - исходная площадь поверхности металла, мм 2 ; t - время коррозии, ч.

Из таблицы следует, что в пределах изменения напряжения на конденсаторе до $4800~\mathrm{B}$ включительно, не наблюдается значимых изменений в величине показателя коррозии. И лишь при напряжении $6000~\mathrm{B}$, причём как при положительном, так и отрицательном заряде, сообщаемом образцам, начинаем фиксировать увеличение показателя коррозии. Поэтому, начиная с этого уровня напряжения проводили параллельные измерения для получения более достоверных средних значений K_m^- (табл.2). Анализ данных табл.2 показывает, что на данном этапе исследования имеются основания рассматривать зависимость скорости коррозии титана только от величины подводимого напряжения, но не от знака заряда и потенциала на металле.

Значение показателя коррозии для всех 48 измерений в опытах при напряжении от 400 В до 4800 равно: $K_m^-(673\mathrm{K};400\mathrm{B}\div4800\mathrm{B})=(4,0\pm0,3)\cdot10^{-5},$ г/(мм²·ч), (P=0,95; f = 47), что совпадает со значением $K_m^-(673\mathrm{K})=(4,5\pm0,5)\cdot10^{-5},$ г/(мм²·ч), (P=0,95; f = 30), определённым в работе [3] и значением

 $K_m^-(673\text{K}) = (4,6 \pm 0,5) \cdot 10^{-5}$, г/(мм²·ч), (P=0,95; f = 50), которое имеется у нас для коррозии титана и его сплава в обычных условиях в настоящее время, так как для контроля мы продолжали периодически проводить опыты без подключения электрического напряжения к конденсатору. Среднеарифметические значения и доверительные интервалы величины показателя коррозии при подаче напряжения $6000 \, \text{B}$, $7000 \, \text{B}$ и $7680 \, \text{B}$ также приведены в таблице 2.

Таблица 2 - Средние значения и доверительные интервалы массового показателя коррозии образцов в потоке пара тетрахлорида углерода в зависимости от знака, подводимого к образцам извне электрического заряда и величины напряжения на конденсаторе реактора

No	Знак заряда		No	Знак заря-	
опыта,	на титане и	$(\mathbf{K}_{m}^{-} \pm \Delta \mathbf{K}_{m}^{-})$	опыта,	да на ти-	$(\mathbf{K}_{\mathrm{m}}^{-} \pm \Delta \mathbf{K}_{\mathrm{m}}^{-})$
металл,	напряжение	10^5 , $\Gamma/(MM^2 \cdot Y)$.	металл,	тане и	10^5 , $\Gamma/(MM^2 \cdot Y)$.
№ партии	на конден-		№ партии	напряже-	
	саторе, В	P = 0.95; $f = 3$	r	ние на	P = 0.95; f = 3
	ourope, 2			конденса-	
				торе, В	
1, BT6, 2	+ 400	$3,5 \pm 1,6$	17, BT6, 3	- 7000	7.3 ± 3.0
_, , _	1 400	3,5 = 1,0	, , -	7000	7,5 ± 5,0
2, BT6, 2	- 400	$4,4 \pm 1,7$	18, BT1-05	+ 7000	5.0 ± 2.2
2, 210, 2	- 400	7,7 + 1,7	10, 211 00	1 7000	$3,0 \pm 2,2$
3, BT6, 2	- 800	$4,4 \pm 1,0$	19, BT1-05	- 7000	4.5 ± 1.6
3, 210, 2	- 800	7,7 ± 1,0	15, 1511 05	- 7000	7,5 ± 1,0
4, BT6, 2	+ 800	$3,7 \pm 1,9$	20, BT1-05	+ 7000	3.8 ± 1.4
1, 110, 2	T 800	$3,7 \pm 1,9$	20, 11 03	+ 7000	3,0 ± 1, 4
5, BT6, 2	+ 1200	3.0 ± 0.4	21, BT1-05	+ 7000	$8,4 \pm 2,4$
3, 10, 2	+ 1200	3,0 ± 0,4	21, 11 03	+ 7000	0,4 ± 2,4
6, BT6, 2	- 1200	3.9 ± 1.8	22, BT1-05	- 7000	11.6 ± 0.8
0, 10, 2	- 1200	3,9 ± 1,0	22, B11 03	- 7000	11,0 ± 0,8
7, BT6, 2	+ 2100	$3,3 \pm 1,1$	23, BT1-05	+ 7000	$13,2 \pm 1,5$
7, 10, 2	+ 2100	$3,3 \pm 1,1$	23, 11 03	+ 7000	$13,2 \pm 1,3$
8, BT6, 2	- 2100	$4,3 \pm 1,8$	24, BT1-05	+ 7680	$12,2 \pm 1,4$
0, 10, 2	- 2100	$4,3 \pm 1,6$	24, D11-03	+ /080	$12,2 \pm 1,4$
9, BT6, 2	+ 3600	3.5 ± 1.4	25, BT1-05	- 7680	16.8 ± 1.5
<i>)</i> , D 10, 2	+ 3000	$3,3 \pm 1,4$	25, 111-05	- 7080	$10,0 \pm 1,3$
10, BT6, 2	- 3600	$5,5 \pm 1,8$	26, BT1-05	+ 7680	$4,1 \pm 1,7$
10, 110, 2	- 3000	$3,3 \pm 1,8$	20, D11-03	+ /080	4,1 ± 1,/
11, BT6, 2	- 4800	3.7 ± 1.3	27, BT1-05	- 7680	9.0 ± 1.3
11, 510, 2	- 4000	$\mathcal{I}, \mathcal{I} \perp 1, \mathcal{I}$	21, 111 03	- 7000	9,0 4 1,3
12, BT6, 2	+ 4800	$5,3 \pm 1,9$	28, BT1-05	+ 7680	$13,2 \pm 0,8$
12, 510, 2	T 4000	$J,J\perp 1,\mathcal{I}$	20, 11 03	T /000	13,2 ± 0,0

Продолжение таблицы 1

№	Знак заря-		№	Знак за-	
опыта,	да на ти-	$(\mathbf{K}_{\mathrm{m}}^{-} \pm \Delta \mathbf{K}_{\mathrm{m}}^{-}) \cdot 1$	опыта,	ряда на	$(\mathbf{K}_{\mathrm{m}}^{-} \pm \Delta \mathbf{K}_{\mathrm{m}}^{-}) \cdot 1$
металл,	тане и	05, г/(мм2·ч).	металл,	титане и	05, г/(мм2·ч).
№ партии	напряже-	P = 0.95; $f = 3$	№ партии	напря-	P = 0.95; f = 3
	ние на	$\Gamma = 0,93, 1 = 3$		жение на	$\Gamma = 0,93, 1 = 3$
	конденса-			конден-	
	торе, В			саторе, В	
13, BT6, 2	+ 6000	$7,3 \pm 2,7$	29, BT1-05	- 7680	$12,8 \pm 2,0$
14,BT6, 2	- 6000	$8,3 \pm 2,0$	13 - 16	± 6000	$7,9 \pm 1,5$
					(P = 0.95; f = 15)
15, BT6, 2	- 6000	$11,3 \pm 2,1$	17 - 23	± 7000	$7,7 \pm 0,2$
					(P = 0.95; f = 27)
16,BT6, 3	+ 6000	$4,5 \pm 0,4$	24 - 29	± 7680	$11,4 \pm 1,7$
					(P = 0.95; f = 23)

Вся совокупность полученных данных позволяет рассчитать для каждого из напряжений: 6000 В , 7000 В и 7680 В характеристику, которую можно назвать коэффициентом увеличения массового показателя коррозии титана при сообщении металлу электрического заряда от внешнего источника с определённым электрическим напряжением [$\alpha_0(U)$]:

$$\alpha_{\varrho}(U) = \frac{K_{m}^{-}(673K;U)}{K_{m}^{-}(673K)},$$
(3)

где $K_m^-(673\text{K})$ - массовый показатель коррозии титана в обычных условиях, $\Gamma/(\text{MM}^2 \cdot \text{ч})$;

 K_m^- (673K; U) - массовый показатель коррозии титана в условиях сообщения металлу электрического заряда (положительного или отрицательного) от источника с напряжением U, г/(мм²·ч).

Значения предлагаемого коэффициента и доверительные интервалы приведены в таблице 3.

Таблица 3 - Средние значения и доверительные интервалы коэффициента увеличения массового показателя коррозии титана в потоке паратетрахлорида углерода в зависимости от величины подводимого извне напряжения на электрический конденсатор реактора

Напряжение на конденсаторе реактора, В	6000	7000	7680
$\alpha_Q(U)$	$1,7 \pm 0,6$	$1,7 \pm 0,3$	$2,5 \pm 0,7$

Их анализ показывает, что скорость реакции (1) в зависимости от подводимого напряжения на конденсатор в интервале $6000 \div 7680$ В в среднем увеличивается в $2,0 \pm 0,5$ раза. Наметился также рост самого коэффициента $\alpha_Q(U)$ с увеличением подводимого напряжения. Установленное нами изменение скорости гетерогенной химической реакции (1) вследствие оказываемого на систему внешнего физического воздействия (сообщения металлу электрического заряда) является весьма значительным. Отметим, что в работе [4] увеличение скорости твёрдофазной гетерогенной реакции вследствие ультразвуковой активации на 10-15% охарактеризовано как «заметное». В качестве ещё одного наблюдаемого эффекта влияния напряжения $6000 \div 7680$ В на изучаемую систему отметим более слабую адгезию плёнки образующегося по реакции (1) углерода к металлу: плёнка разрушается и отслаивается уже при извлечении образцов из реактора (рисунок 2, б).

Выводы.

С целью изучения влияния знака и величины электрического заряда, подводимого от внешнего источника к металлическим образцам, на скорость реакции окисления металла предложена конструкция химического реактора с электрическим конденсатором цилиндрического типа, в котором испытуемые образцы являются составной частью внутренней обкладки. Гравиметрическим методом изучена скорость коррозии технически чистого титана ВТ1-0 и титанового сплава ВТ6 в потоке пара тетрахлорида углерода при температуре 673 К, при напряжении на конденсаторе в реакторе от 400 В до 7680 В и при различной полярности внутренней обкладки. Установлен эффект влияния электрического заряда любого знака, подаваемого от внешнего источника на окисляющийся металл в интервале напряжений на конденсаторе от 6000 В до 7680 В на скорость газовой коррозии титана в тетрахлориде углерода. Установлено, что скорость реакции (1) в зависимости от подводимого напряжения на конденсатор в интервале 6000 ÷ 7680 В увеличивается, в среднем в 2.0 ± 0.5 раза. Проявилась тенденция к росту коэффициента увеличения скорости с увеличением подводимого напряжения. Эффект увеличения скорости окисления титана хлорагентом может быть полезным при переработке титанового лома.

Библиографический список

- 1. Зайцев. Н.С., Бендре Ю.В., Зенцова С.В., Горюшкин В.Ф. Электрическая ёмкость и энергетические характеристики химического реактора с подводом к металлу, при его окислении в реакторе газом, электрического потенциала от внешнего источника // Наука и молодёжь: проблемы, поиски, решения: труды Всероссийской научной конференции студентов, аспирантов и молодых учёных / Сиб. гос. индустр. ун-т; под общ. ред. М.В. Темлянцева. Новокузнецк: Изд. центр СибГИУ, 2016. Вып. 20. Ч. III. Естественные и технические науки. С. 25 30.
 - 2. Горюшкин В.Ф., Бендре Ю.В., Тонкушин Я.В., Соскова Н.А., Будов-

- ских Е.А. Газовая коррозия титана в тетрахлориде углерода // Вестник Сибирского государственного индустриального университета. 2013.-№ 1(3). С. 25-28.
- 3. Горюшкин В.Ф., Бендре Ю.В., Зенцова С.В., Гагарин А.Ю. Механизм и кинетические параметры газовой коррозии титанового сплава ВТ6 в тетрахлориде углерода // Вестник Сибирского государственного индустриального университета. 2014. № 2(8). С. 40-43.
- 4. Баранчиков А.Е., Олейников Н.Н., Третьяков Ю.Д. Кинетика твёрдофазного синтеза при одновременном воздействии высокой температуры и ультразвукового поля// Неорганические материалы.— 1999.— Т.35.- №3. С. 352.

УДК 669.713.017:538.9

ИССЛЕДОВАНИЯ ПОТЕРИ МАССЫ ПОЛИКРИСТАЛЛИЧЕСКОГО АЛЮМИНИЯ МАРКИ А85 ПРИ ИЗМЕНЕНИИ ТЕМПЕРАТУРЫ ДЛЯ ОБРАЗЦОВ, РАЗРУШЕННЫХ В УСЛОВИЯ ПОЛЗУЧЕСТИ С МАГНИТНЫМ ВОЗДЕЙСТВИЕМ И БЕЗ НЕГО

Шляров В.В., Осинцев К.А.

Научный руководитель: канд. техн. наук, доцент Загуляев Д.В.

Сибирский государственный индустриальный университет, г. Новокузнецк, e-mail: zagulyaev_dv@physics.sibsiu.ru

В работе использовали метод исследования химических и физико-химических процессов, происходящих в веществе в условиях изменения температурного режима. Исследования производились на образцах алюминия марки A85 разрушенных в условиях ползучести с предварительной магнитной обработкой и без неё. Также использовались в работе образцы как после отжига, так и без него. Были получены зависимости изменения массы образца от температуры.

Ключевые слова: магнитное поле, термография, технически чистый алюминий, масса, ползучесть.

Одним из наиболее быстро развивающихся направлений в фундаментальной и прикладной науки, являются исследования свойств материалов после различного рода воздействий. К которым можно отнести: плазменную, лазерную [1] и пучковую обработку [2], воздействия импульсными и постоянными магнитными полями [3, 4], нанесение различного рода покрытий [5] и т.д. Также актуальность имеют исследования, связанные с изучением физико-химических свойств материалов в различных средах и при различных температурах например - термография, или термический анализ, является одним из наиболее распространенных методов исследования фазового состава материалов. С помощью термографии изучают состав минерального сырья для производства строительных материалов, определяют температуру,

СОДЕРЖАНИЕ

І. ЕСТЕСТВЕННЫЕ НАУКИ	3
Романов Д.А., Степиков М.А., Гаевой Е.А., Апанина В.О. Анализ структуры электровзрывных покрытий системы TiC-TiAL методом просвечивающей электронной микроскопии	3
Зайцев Н.С., Бендре Ю.В., Зенцова С.В. Активация реакции окисления титана статическим электрическим зарядом, сообщаемым металлу от внешнего источника.	6
Шляров В.В., Осинцев К.А. Исследования потери массы поликристаллического алюминия марки A85 при изменении температуры для образцов, разрушенных в условия ползучести с магнитным воздействием и без него.	15
Истомин И.Б. Спектральный метод исследования межфазных взаимодействий на границе раздела уголь-раствор ПАВ	20
Павлов Н.В. Поведение наноразмерных пленок оксида молибдена (VI) под действием света.	23
Суровая В.Э. Модификация наноразмерных пленок марганца в процессе термической обработки при T=473К.	26
Назарова Е.С. Облучение наноразмерных пленок висмута светом $\lambda = 360$ нм интенсивностью $I = 7,0\cdot 10^{15}$ квант см ⁻² · с ⁻¹	29
Гостевская А.Н., Рубанникова Ю.А., Мусорина Е.В. Структурно-фазовые состояния и свойства поверхности термомеханически упрочненной низкоуглеродистой стали	32
Мусорина Е.В., Гостевская А.Н., Рубанникова Ю.А. Эволюция структурно-фазовых состояний поверхностного слоя рельсовой стали при длительной эксплуатации	34
Рубанникова Ю.А., Мусорина Е.В., Гостевская А.Н. Влияние электронно-пучковой обработки на структурнофазовые состояния поверхностного слоя материала наплавки,	
сформированной на стали электроконтактным методом	36

устюжанин С. В., І рановскии А.Ю.	
Модели формирования капель на электроде при электросварных технологиях	39
Шляпников С.С. Математическое моделирование структурно-фазовых превращений при прерывистом охлаждении проката	42
Поданев А.П., Грановский А.Ю. Модель перемешивания в ванне расплава при электродуговой наплавке	45
Козлова И.В., Сысолятин А.С. Определение основных параметров высококалорийного синтез-газа полученного из органических веществ.	48
Ильященко А.В. Математическая модель распространения термоупругих волн при воздействии газокапельной среды на горячий прокат	51
Михайлов В.А. Оптические свойства наноразмерной системы Ві – МоО ₃ при Т=473К	54
Бахриева Л.Р., Романов Д.А. Анализ особенностей формирования структуры электровзрывного покрытия системы Mo-C-Cu	57
Беляев В.А. Варианты метода коллокации и наименьших невязок для решения задач математической физики в неканонических областях	59
II. ПЕРСПЕКТИВНЫЕ ТЕХНОЛОГИИ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ	61
Сергеев А.А. Использование комплекса глубокой разработки пластов на разрезе «Южный»	61
Ермилов В.В., Матвеев А.В. Анализ современных методов разработки месторождений природного камня	64
Сергеев А.А. Увеличение производительности обогатительной установки с крутонаклонным сепаратором	66

Веденяпина О.Ю. Энергосистема Кузбасса	69
Обрядин А.А. Разработка структуры и выбор средств реализации модели проведения горной выработки	72
Шабунов М.Е. К анализу путей модернизации устаревших вентиляторов главного проветривания шахт.	76
Микунов В.В., Никитина А.М., Риб С.В. Разработка технико - технологических решений по повышению эффективности монтажно-демонтажных работ для шахт Юга Кузбасса на примере ООО «Шахта «Алардинская»	78
Черешнева Е.В. Разработка алгоритма оценивания результатов выполнения компьютерной лабораторной работы по специальности 21.05.04 «Горное дело»	84
Обрядин А.А. Исследование влияния разгрузочных скважин на напряжённо- деформированное состояние массива горных пород	87
Сёмин А.А., Климкин М.А. Регистрация сейсмических колебаний от подземного массового взрыва	91
Сёмин А.А., Климкин М.А. Регистрация сейсмических колебаний от массовых взрывов в пос. Гавриловка	93
Сёмин А.А., Климкин М.А. Методика и аппаратура регистрации сейсмических колебаний	97
Ильина Е.Н. Применение патронированных эмульсионных ВВ	100
Колмаков А.А. Отработка рудных залежей шерегешевского месторождения в опасных условиях	103
Назаров В.П. Способы предотвращение опасных выделений природных газов при подземной разработке рудных месторождений Норильска	108
Торопова Н.В. Высококачественное брикетное топливо	111

Косинова Н.С.	
Повышение эффективности обезвоживания концентрата при помощи фильтра высокого давления 6ПТК-10	114
Бурова А.О., Малофеев Д.В. Учет влияния технологических взрывов на устойчивость уступов карьеров	117
Малофеев Д.В., Черемных Т.В., Матвеев А.В. Анализ современных методик расчета параметров, принимаемых значений удельного расхода ВВ и кусковатости взорванных пород.	121
Малофеев Д.В., Черемных Т.В., Матвеев А.В. Методическая основа, современные способы расчета параметров БВР и определение гранулометрического состава взорванных пород.	123
III. МЕТАЛЛУРГИЧЕСКИЕ ПРОЦЕССЫ, ТЕХНОЛОГИИ, МАТЕРИАЛЫ И ОБОРУДОВАНИЕ	126
Кузнецов С.Н., Неунывахина Д.Т. Математическое моделирование процессов восстановления железа в условиях термохимического окускования конвертерных шламов.	126
Запольская Е.М. Разработка показателя тепловой эффективности стендов высокотемпературного разогрева футеровок сталеразливочных ковшей	129
Кузнецова О.В., Коноз К.С. Влияние неравномерности нагрева заготовок на угар металла в методических печах с механизированным подом	132
Числавлев В.В. Моделирование гидродинамических процессов в промежуточном ковше с использованием полнопрофильных перегородок	135
Думова Л.В., Уманский А.А. Исследование влияния химического состава рельсовой стали Э78ХСФ на образование поверхностных дефектов рельсов при их производстве	138

Сафонов С.О.	
Анализ конструктивных особенностей дутьевых устройств для продувки металлического расплава в конвертере	141
Горшенева О.В.	
Исследование эффективности внепечной обработки металла с использованием различных шлакообразующих	
смесей в ККЦ № 2 AO «ЕВРАЗ ЗСМК»	144
Башев В.С., Чумаевский А.В., Зыкова А.П. Исследование влияния нанопорошка Ті на микроструктуру и механические свойства сплава АК12.	146
Думова Л.В., Уманский А.А. Исследование влияния параметров продувки азотом при обработке на установках доводки металла на его	4.40
концентрацию в готовой стали и качество слитков	149
Ишин Д.Е. Исследование технологических особенностей продувки металла в 350-т конвертерах АО «ЕВРАЗ ЗСМК» с использованием высокомагнезиального флюса ФОМИ	152
Подаруев С.Е. Совершенствование конструкции погружных стаканов для непрерывной разливки рельсовой стали в ЭСПЦ АО «ЕВРАЗ ЗСМК»	155
Костина Д.А., Топоркова Ю.И. Исследование процесса выщелачивания пыли электродуговой плавки в аммиачно-хлоридных системах.	157
Думова Л.В., Уманский А.А. Анализ влияния параметров внепечной обработки рельсовой электростали на образование оксидных неметаллических включений	159
Садыкина Р.А. Влияние химического состава чугуна на производительность	
кислородного конвертера	162
Думова Л.В., Уманский А.А. Обоснование технико-экономической эффективности	
применения новых видов ферросплавов для раскисления рельсовой электростали	164

Денисов Я.В., Уманский А.А.	
Исследование формоизменения внутренних дефектов	
непрерывнолитых заготовок при использовании	
различных методов производства рельсов.	167
Гальчун А.Г.	
Снижение расхода топлива на нагревательных печах	
AO «EBPA3 3CMK»	170
Шафикова С.А., Мухарлямова В.И.	
Оценка эффективности применения различных видов	
связующих в технологии переработки техногенного	
железосодержащего сырья	173
Ульянина В.А., Семенов В.М.	
Модель выбора связующего материала для процесса	
брикетирования железосодержащего техногенного сырья	178
Каргапольцева Т.Н. Проблемы переработки вторичного свинцового сырья	181
	101
Дитков Д.В. Журба О.М.	
Использование конечно элементного моделирования	100
при прочностных расчетах прокатного оборудования	182
Журба О.М., Дитков Д.В.	
Определение работоспособности системы прокатная	
клеть – валковая арматура	185
Прудников В.А.	
Влияние отжига на линейное расширение листовой стали 10,	
изготовленной с использованием термоциклической деформации	188
Прудников В.А., Сазонов М.С.	
Воздействие термической обработки на микроструктуру	
и фазовый состав поршней двигателей ЯМЗ из сплава АК21	191
Прудников В.А., Духанин Ф.А.	
Формирование поверхности излома слитков полунепрерывного	
литья из заэвтектического силумина	194
Иванов А.А., Шабалин А.В.	
Влияние газового азотирования на стойкость инструмента	
для литья пластмасс	197
Иванов А.А. Изучение влияния химического состава на прокаливаемость	
стали марки 30ХГСА	200
	_00

Рахуба Е.М., Деев В.Б., Сметанюк С.В., Пономарева К.В.,	
Приходько О.Г. Особенности технологии получения художественных	
литых изделий из сплавов на основе олова	203
	202
Рахуба Е.М., Деев В.Б., Сметанюк С.В., Пономарева К.В., Приходько О.Г.	
Перспективы использования сплавов на основе олова	
для художественного литья	205
Рахуба Е.М., Деев В.Б., Сметанюк С.В., Пономарева К.В., Приходько О.Г.	
Технико-экономическое обоснование применения	
легкоплавких сплавов для художественного литья	207
Сметанюк С.В., Деев В.Б., Рахуба Е.М., Пономарева К.В., Приходько О.Г.	
Совместное использование полиуретана и отходов	
литейного производства для изготовления оригинальных	
художественных изделий	209
Яблонский М.А. Совершенствование технологии сварки рельсов	213
Долгополов А.Е., Мамедов Р.О.	
Исследования влияния физико-механических свойств XTC	
на качество отливок из железоуглеродистых сплавов	216
Шишкин П.Е., Шевченко Р.А., Патрушев А.О.	
Оптимизация режимов сварки рельсов на машине К 1100	
методами математического моделирования	219
Шишкин П.Е., Патрушев А.О.	
Моделирование процесса сварки рельсов на машине К 1100	222
Шевченко Р.А., Шишкин П.Е., Патрушев А.О.	
Расчет оптимальных режимов электроконтактной сварки	
железнодорожных рельсов.	225
Шевченко Р.А., Шишкин П.Е., Патрушев А.О.	
Применение методов математического моделирования	
для оптимизации технологических параметров	
процесса контактной сварки рельсов	229
Долгополов А.Е., Мамедов Р.О.	
Исследования влияния физико-механических свойств XTC	
на качество отливок из железоуглеродистых сплавов	232

Осетковский И.В., Гусев А.И.	
Влияния кобальта на механические свойства	
и структуру металла наплавленного порошковой	225
проволокой системы Fe-C-Si-Mn-Cr-Ni-Mo-V	235
Гусев А.И., Осетковский И.В.	
Исследование качества металла, наплавленного порошковой	
проволокой системы Fe-C-Si-Mn-Cr-Mo-Ni-V-Co.	237
Михно А.Р., Бурнаков М.А. Применение углеродфторсодержащих добавок для сварочных флюсов.	240
Бурнаков М.А., Михно А.Р.	
Возможность использования карбонатов в сварочных флюсах	242
Непомнящих А.С., Федотов Е.Е., Белов Д.Е. Исследование и разработка новых составов порошковой	
проволоки системы C-Si-Mn-Cr-V-Мо для наплавки	
прокатных валков	245
•	213
Федотов Е.Е., Непомнящих А.С., Белов Д.Е.	
Совершенствование состава порошковых проволок системы C-Si-Mn-Cr-W-V с целью повышения качества	
и эксплуатационных характеристик наплавленного слоя	248
	2.0
Патрушев А.О., Липатова У.И., Свистунов А.Д, Айматов В.Г.	
Разработка новых сварочных флюсов	250
	250
Патрушев А.О., Липатова У.И.	
Разработка нового сварочного флюса на основе шлака силикомарганца	252
•	232
Патрушев А.О., Липатова У.И., Махин Д.И.	
Использование барий-стронциевого карбонатита	255
при сварке под флюсом	255
Баротов Ф.Б.	
Нанометаллургия вольфрама: современное состояние	255
и перспективы развития	257
Мацела Е.В.	
Кристаллическая структура боридов хрома: актуализация	
и систематизация научно-технической информации	260
Алексеева Т.И.	
Применение карбида циркония в современной технике:	
настоящее и будущее	263

Алексеева Т.И.	
Анализ российского и мирового рынка нанокристаллического карбида циркония	265
Комрони М. Сырьевая база производства молибдена	268
Коновалова Х.А.	
Смолистые отходы коксохимического производства: практика и перспективы применения	271
Павловская Е.Д., Чистюхин Е.А., Джалолов Х.О. Комплексная аттестация цинксодержащих шламов предприятий по производству искусственных	
волокон Западно-Сибирского региона.	275
Чистюхин Е.А., Джалолов Х.А., Павловская Е.Д. Переработка цинксодержащих отходов химико-металлургических производств Западно-Сибирского региона.	278
Попов А.С.	
Особенности улавливания аммиака при очистке коксового газа	280
Старцев С.С.	
Способы сухого тушения кокса: технологические особенности и перспективы применения	283
Ефимова К.А.	
Производство диборида титана: исследование	
современных технологических решений, оценка	
перспектив развития	286
Ефимова К.А.	
Применение диборида титана: мониторинг состояния	200
и анализ перспектив	289
Ефимова К.А.	
Перспективы применения диборида титана в покрытии катода алюминиевого электролизера	292
Пономарев Н.С. Коксовая пыль КХП: практика и перспективы использования	295
Пенкин А.Е.	
Колонные флотомашины: сравнительный анализ	200
и перспективы использования	298

Ефимова К.А.	
Нанотехнологии в производстве многофункциональных соединений титана с бором и углеродом: состояние,	
исследование, результаты	300
Малюх М.А.	
Влияние меди на линейное расширение алюминиевых сплавов Al-Si	304
IV. ЭКОЛОГИЯ. БЕЗОПАСНОСТЬ. РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ	308
Сазонова Я.Е. Влияние способа отопления котельных агрегатов на вредные выбросы в атмосферу	308
Садковский В.С. Оценка экологичекого риска от выбросов в атмосферу доменного цеха.	311
Злобина Е.С. Переработка высокозольных угольных отходов в топливо методом масляной агломерации.	316
Брызгалова А.Ю., Семичева И.Р. Исследования содержания тяжелых металлов в сточных водах металлургического производства.	319
Рогозина А.В., Обгольц Е.О. Состояние вопроса загрязнения почв тяжелыми металлами г. Новокузнецка.	323
Дятлова К.А. Каталитическое обезвреживание выбросов коксохимического производства на базе металлургических шлаков	326
Перегоедова К.А. Возможность глубокого обезвоживания отходов углеобогащения с помощью фильтр-пресса	331
Кононова А.С. Решение задач энергосбережения на молочных фермах с помощью тепловых насосов.	334
Колпаков Д. Е. Способы оценки воздействия участка открытых горных работ на состояние подземных вод	337

Мелентьева А.В., Зинченко Г.Г.	
Влияние деятельности угольного предприятия на изменение качества воды	342
Клишин М.В. О рациональном использовании отходов углеобогащения	347
	517
Зонов Д.И., Устинова А.Г., Шишкин А.А. Источники энергии для тепловых насосов	350
Шалаева Н.А. Каталитическая очистка выбросов цехов улавливания и переработки химических продуктов коксования	352
Кравченко К.Н. Использование вторичного сырья, содержащего V_2O_5 для производства катализатора.	357
Дроздова А.В. Актуальность техники безопасности на электроэнергетических предприятиях	360
Мещерякова Д.Е., Пушкарёва Н.Ю., Скрябина Е.А. Биологический этап рекультивации нарушенных земель угольного разреза.	363
Каримова И.О. Построение дерева событий для опасного производственного объекта: нефтесборного пункта.	366
Воронцов А.В. Влияние высоковольтных ЛЭП и магнитного поля промышленной частоты на безопасность жизнедеятельности людей.	371
Птухина Т.Д., Фёдоров В.М. Теплообменики с оребренными поверхностями	374
Шенцова М.А., Пушкарёва Н.Ю., Скрябина Е.А. Технологические основы биологической очистки сточных вод городских очистных сооружений	376
Квашевая Е.А., Ушакова Е.С., Козлова И.В. Сбор аварийных разливов нефти с водных поверхностей сорбентами на основе вторичного сырья.	380
Козлова И.В., Квашевая Е.А. Получение альтернативной энергии	383

Истомин И.Б.	
Использование техногенных углеродсодержащих	
отходов в качестве нагревательных элементов	386
Истомин И.Б. Многофункциональная робототехническая платформа для ведения аварийно-спасательных работ на подземных объектах.	389
Сысолятин А.С. Козлова И.В., Ушаков К.Ю.	
Влияние дымовых газов угольной генерации на окружающую среду и способы его очистки	392
Попов В.С. Поиск новых методов утилизации полимеров	395
Уманская Ю.В. Оценка экологического состояния почвы Юго-Восточного административного округа Москвы.	398
Никокошева А.А., Захарова Н.С. Переработка и утилизация автомобильных покрышек	400
Козлова Н.Е., Абдыкалык Т.Е. Комплексная стоимостная оценка энергоэкологического качества топлива.	403
Татаринова Е.С., Чикурова И.В.	
Прогнозирование эмиссии диоксида углерода на основе углеродного потенциала топлива	409
Хертек А-Д.А. Разработка универсального элемента тепловой изоляции	412
Хертек А.А. Создание обобщенной модели теплопроводности газов	416
Пуликов П.С. Использование тепловых насосов для увеличения эффективности работы ТЭЦ	420
Колегова А.А. Система международных документов по регулированию проблемы глобального изменения климата	422
Александрова О.А., Алшынбаев С.Д. Экологическое состояние реки Абы: настоящее и будущее	425

Научное издание

НАУКА И МОЛОДЕЖЬ: ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ ЕСТЕСТВЕННЫЕ И ТЕХНИЧЕСКИЕ НАУКИ Часть II

Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых

Выпуск 21

Под общей редакцией М.В. Темлянцева Технический редактор Г.А. Морина Компьютерная верстка Н.В. Ознобихина

Подписано в печать 26.04.2017 г. Формат бумаги 60х84 1/16. Бумага писчая. Печать офсетная. Усл. печ. л. 25,8 Уч.-изд. л. 28,2. Тираж 300 экз. Заказ № 236

Сибирский государственный индустриальный университет 654007, г. Новокузнецк, ул. Кирова, 42 Издательский центр СибГИУ