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Abstract—We have made a brief review of recent foreign and domestic publications, in which the structures,
phase compositions, and properties of films and coatings of five-component high-entropy alloys (HEA) on
different substrates and the modification of HEA surfaces by different kinds of treatment have been studied.
The main methods of film deposition and coatings such as magnetron sputtering, thermal evaporation, laser
deposition, and electrodeposition are discussed in the paper. Special attention is paid to the deposition of
coatings on stainless steels and titanium alloys. A positive change in the tribological, strength properties, and
corrosion resistance of film coatings is seen in a wide temperature range. Possible reasons for the observed
effects are discussed considering the role of solid-solution hardening, the formation of a fine-grained struc-
ture, and the formation of oxide layers enriched by one of the HEA components. New methods for deposition
of HEA coatings and subsequent treatment have been distinguished. The role of niobium and titanium in an
increase in the microhardness, wear resistance, and decrease in the friction coefficient of the coatings is con-
sidered exemplified by alloying with these elements. The electrolytic polishing, electroerosive machining,
mechanical polishing, and combinations thereof are used among the HEA surface treatment methods. In
some works, it is suggested to use the powder boriding technique to increase the surface strength and wear
resistance of HEA. The studies have been analyzed with respect to electron-beam treatment—one of the
promising and highly effective methods of HEA surface hardening.
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INTRODUCTION
High-entropy alloys (HEA) are a new class of

materials that consist of at least five elements in the
equiatomic or close to equiatomic ratio, which pro-
vides them, unlike traditional alloys, with unique
properties [1]. The concept of HEA is based on the
idea that a high mixing entropy can promote the for-
mation of stable single-phase microstructures [2],
which does not contradict the phase rule based on the
laws of thermodynamics. There is an unprecedented
worldwide interest in the development and research of
HEAs. The first work in this direction should be con-
sidered study [3], in which the atomic concentration of
the elements that compose the HEA ranges from 5 to
35%. The features of the chemical composition and
structure of HEA lead to the so-called core effects,
which determine the unique properties of these mate-

rials [4–7]: the effect of high entropy, the effect of
strong distortions of a crystal lattice, the effect of
delayed diffusion and the cocktail effect. The first
effect is that a decrease in the entropy upon transition
to a more ordered state outweighs the decrease in
enthalpy due to the effect of the formation of an
ordered phase [2, 8]. The effect of crystal lattice dis-
tortions is due to the fact that atoms with different sizes
randomly occupy interstices in the crystal lattice.
Obviously, larger atoms will be located at the maxi-
mum distance from each other since in this case the
distortions of the crystal structure and the system
energy will decrease. The effect of delayed diffusion is
associated with the effect of distortions of the crystal
lattice as well as with the formation of nanosized
inclusions and amorphous multicomponent phases in
different methods of obtaining HEA [2, 9–12]. This
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effect is of great practical importance since, e.g., the
corrosion resistance depends on the diffusion rate.
There is no strict definition of the cocktail effect; it usu-
ally means the ability of an alloy to have properties that
are inaccessible to each of its components separately
[2, 4]. As a rule, the HEA has properties that exceed the
summed properties of all the alloy components.

The extensive original results, comments, analysis
of the HEA properties, and prospects for HEA appli-
cation are generalized in reviews and monographs
[1, 15, 16]. In publications [17, 18], a brief review of
recent foreign researches of the structural and basic
states and properties of five-component high-entropy
alloys over a wide temperature range is carried out.
Among the works of domestic researchers for the pre-
vious five years, publications [19–24] should be
noted, in which the effect of composition on the
mechanical properties and fine structure parameters
of single- and polycrystalline HEAs obtained by dif-
ferent methods was studied.

In last five years, despite many publications on
HEA and the existing serious problems analyzed in
[1, 2, 15, 16], two fundamentally new directions in the
physics of HEA have emerged: improving surface
properties by fabrication of thin coatings and films;
modification of the HEA surface by different treat-
ment processes.

RESULTS AND DISCUSSION
Among many methods for deposition of HEA films

or coatings, it is necessary to focus on four of them,
which have a number of advantages: magnetron sput-
tering [25], thermal evaporation [26], laser evapora-
tion [27, 28], and electrodeposition [29]. The use of
HEA coatings instead of bulk coatings, on the one
hand, substantially reduces the cost of products; on
the other hand, substantially expands the scope [29].

Magnetron Sputtering
The first works were carried out to obtain coatings

from multicomponent carbides, nitrides, and oxides
[30–33]. Recently, multilayer nanostructured lami-
nates have been obtained by magnetron sputtering
[34, 35]. It is necessary to focus on a new method to
obtain HEA nanoparticles coated with multilayer
graphene [36], which can be useful in the mechanical
synthesis of HEAs.

Magnetron sputtering of HEA makes it possible to
obtain highly uniform thin coatings, the properties of
which are substantially better than the substrate prop-
erties. Thus, the deposition of a CrNbTiMoZv HEA
film by DC magnetron sputtering on 304 stainless
steel (International Classification) provides a nano-
hardness of 9.7 GPa and excellent tribological proper-
ties [37]. The tests of the coating obtained by magne-
tron sputtering of five AlTiCrNiTa targets on X80 steel
demonstrated the chloride corrosion resistance and
density of the film–substrate system [38] during oper-
ation. In [39], the corrosion resistance of films based
on AlCrTiV with the addition of copper, molybdenum
and Cu/Mo additives deposited by magnetron sputter-
ing on 304 stainless steel have been analyzed, and it is
substantiated that all the coatings have properties that
are substantially superior to those of the substrate due
to the formation of stable Al2O3, Cr2O3 oxides and
others.

Laser Coatings

There are much more publications devoted to the
laser method of coating deposition than to the magne-
tron one. HEA FeNiCoCrMox films (x = 0; 0.15; 0.20;
0.25) deposited on 304 and 316 stainless steels led to an
increase in the microhardness by 90.5% with respect
to the substrate and a decrease in the wear rate by
38.9%. A decrease in the friction coefficient and an
increase in the corrosion resistance are due, in
authors’ opinion, to the effect of MeO3 oxide on the
passivating coating [39]. 304 stainless steel coated with
different HEAs is a subject of the extensive research
[40–44]. The study of AlCoCrFeNi, AlCoCrFeMo,
and FeCoCrMnTi coatings [45] shows a positive
change in the tribological and strength properties of
film coatings and in the corrosion resistance. To coun-
teract high-temperature wear, where the main mecha-
nisms are oxidation and abrasive wear, the authors of
[46] suggest to use AlCrFeMnNi HEA coatings that
have a protective effect due to the formation of an
oxide protective film, which substantially reduces the
friction coefficient and the wear parameter up to 0.48
and 1.25 × 10–4 mm3/(N m), respectively, at 400°C.
The laser exposure, which ensures the re-melting of
the surface of Cr13 steel hardened with a high-entropy
FeCrCoAlx coating, leads to the uniform distribution
of elements in the body-centered lattice due to the
increased mixing entropy and the formation of AlOx
and CrOx oxide films. All this provides the substan-
tially increased corrosion resistance [47]. The
CoCrFeMnTi0.2 HEA two-layer coating formed on
15CrMn steel has a microhardness of 428.26 HV0.3,
which is 3.5 times higher than that of bulk CoCrFeMnNi
HEA. This is obtained due to the solid solution strength-
ening, precipitation hardening, and martensitic transfor-
mation. The wear mechanisms are abrasive and oxida-
tive; the corrosion rate is 0.131 μm/year. Here, the main
role belongs to the multigrain coating structure and the
presence of highly passivating elements [48].

The introduction of alloying elements into the
HEA substantially affects the structural-phase state
and properties of the five-component alloy coatings
[49]. The FeNiCoCrTi0.5Nbx (x = 0.25; 0.50; 0.75;
1.00) high-entropy alloy contains bcc, fcc, and Laves
phases. The upper and lower coating parts are repre-
sented by the equiaxed and columnar crystals, and the
core contains dendrites with different shapes and a
structure in the form of stripes. The hardness of all the
STEEL IN TRANSLATION  Vol. 52  No. 10  2022
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Fig. 1. Change in the hardness of FeNiCoCrTi0.5Nbx coat-
ing as a function of depth at different x [49]: (1) 0.25;
(2) 0.50; (3) 0.75; (4) 1.00.
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Fig. 2. Dependence of microhardness of FeCoNiCrMnTix
HEA coating on the titanium content [50].

M
ea

n 
m

ic
ro

ha
rd

ne
ss

, H
V 0

.2

Sample

800

700

600

500

400

300

200

100

0
304SS Ti0 Ti0.5 Ti1.0 Ti1.5
coatings is substantially higher than that of the matrix,
and the highest value of 852.5 HV (2.9 times higher
than the hardness of matrix) is registered for the
FeNiCoCrTi0.5Nb0.5 coating (Fig. 1). It also has the
lowest rate of abrasive wear.

During the deposition of FeCoNiCrMnTix (x = 0;
0.5; 1.0; 1.5) HEA coating on 30U stainless steel, TiN
reinforcing particles are formed, which are responsible
for the improved mechanical and tribological proper-
ties [50]. With an increase in the titanium content, the
wear resistance, microhardness (Fig. 2), and corro-
sion resistance increase, while the friction coefficient
decreases.

In the aerospace industry, the titanium alloys such
as Ti–6Al–4V are widely used but they have many dis-
advantages, in particular, low wear resistance, hard-
ness, and resistance to chloride corrosion. This is
largely eliminated by laser deposition of HEA coatings
[51], which have an excellent bond with the Ti–6Al–4V
substrate and provide surface hardness and corrosion
resistance. The TiZvAlNbCo HEA coating provides a
hardness of 768.9 HV and excellent corrosion resis-
tance (Icorr = 3.66 × 10–9 A/cm2). This is due to the
formation of fcc phase. The widespread use of the
CoCrFeNiMo0.2 coating, which consists of a bcc
structure with σ-phases and has a uniform dendritic
structure, is due to its high (~900 HV0.1) hardness,
which is 2.3 times higher than that of the substrate. At
600°C, this coating has good wear resistance [52]. The
improved surface properties are due to the combined
contribution of solid solution strengthening and fine
grain structure as well as to the presence of chromium-
rich oxide layers.
STEEL IN TRANSLATION  Vol. 52  No. 10  2022
Among the new methods of deposition of HEA
coatings and subsequent treatment, we should focus
on paper [53], which analyzes the results of studies of
the microstructure, phase composition, grain orienta-
tion, and surface morphology of NiFeCrNbTiAl HEA
coatings formed by the deposition of supersonic parti-
cles followed by laser irradiation. The schematics of
supersonic deposition of particles and technological
parameters are shown in Fig. 3. The laser irradiation
power was 800 W. Argon was used for oxidation pro-
tection during the laser processing. This combined
technology provided the following product parame-
ters: fatigue limit of 252 MPa, tensile strength of
3000 MPa, relative elongation of 14%, friction coeffi-
cient of 0.189, microhardness of 72 GPa, and residual
stress of 14.3 MPa. These indicators are provided by
the isotropic submicro- and nanosized grain structure.

In order to improve the surface properties, the
HEA is subjected to different types of surface treat-
ment. For example, the different treatment methods
and their effect on the surface of CoCrFeMnNi HEA
obtained by the selective laser melting were reviewed
in [54]. The following types of treatment were consid-
ered: electrolytic polishing, electroerosive machining,
milling, grinding, mechanical polishing using abra-
sives as well as a combination of those methods. The
results demonstrated that the grinding resulted in a
smoother surface and an increase in the microhard-
ness; however, it leaves traces from tool action and
residual stresses that arise due to the microstructure
deformation. The mechanical polishing with abrasives
resulted in the ultra-smooth surface with no subsur-
face damage. The electroerosive machining caused
surface melting, which led to an increase in the resid-
ual stresses and microhardness. The use of electropo-
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Fig. 3. Systems of supersonic deposition (SPD) (а) of particles and laser irradiation (LI) (b) [53].
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lishing in combination with other methods smoothed
the surface be means of removing residual stresses and
damage from previous processing. However, the use of
only electropolishing did not result in the micrometer-
level surface roughness. In [55], the problem of low
strength and wear resistance of the CoCrFeMnNi
alloy with an fcc crystal lattice was solved by the pow-
der-pack boriding. As a result, a double layer enriched
with silicon and boron was formed. An increase in the
microhardness and wear resistance of borated samples
has been established. The similar steps were taken in
[56], in which the improvement of density, micro-
structure, surface perfection, and mechanical proper-
ties was obtained by the boriding with CoCrFeNiAl0.25
HEA obtained by powder metallurgy at temperatures
of 900–1200°C.

In comparison with the initial HEA (47.07 GPa),
the elastic modulus increased up to 140–151 GPa, and
the impact strength increased up to 3.57–4.25 MPa m1/2.
One of the most promising and highly effective meth-
ods of surface hardening of products is the electron
beam treatment. This treatment provides ultra-high
(up to 106 K/s) heating rates of the surface layer to
given temperatures and cooling of the surface layer
due to heat removal mainly into material bulk at rates
of 104–109 K/s, as a result of which nonequilibrium
submicro- and nanocrystalline structural and phase
states are formed in the surface layer [57, 58].

Papers [59–63] present the analysis of the struc-
tural-phase states and properties of CrMnFeCoNi and
CoCrFeNiAl HEAs of non-equiatomic compositions
obtained by the wire-arc additive manufacturing
(WAAM) and subjected to electron-beam treatment
(EBT) with the following parameters: energy density
of the electron beam of 10–30 J/cm2, duration of 50–
200 μs, frequency of 0.3 s–1, number of pulses of 3. It
is shown that the EBT that leads to the high-speed
crystallization of a molten surface layer is accompa-
nied by the formation of a nanocrystalline columnar
structure, increases the strength and plastic properties
of HEA, and homogenizes the material.

The irradiation of the Cantor alloy with electron
beams with an energy density of 10–30 J/cm2, a dura-
tion of 50 μs, a frequency of 0.3 s–1, and a number of
pulses of 3 does not lead to a change in the elemental
composition; however, it substantially transforms the
defective substructure. First, it leads to a substantial
(six times, from 20 to 120 μm) increase in the mean
grain size; secondly, to the formation of a structure of
high-speed cellular crystallization with a cell size of
400–550 nm in the a surface layer approximately 5 μm
thick; thirdly, to the formation of a high-speed crystal-
lization texture of the molten surface layer. It is shown
that the irradiation with a pulsed electron beam leads
to the formation of a gradient dislocation substructure
(Fig. 4). A non-disoriented cellular dislocation sub-
structure is formed in the surface layer, in bulk cells of
which randomly distributed dislocations are observed.
At a depth of 25 μm a non-disoriented cellular-net
dislocation substructure is formed with the highest
dislocation density of 5.5 × 1010 cm–2. Alongside with
a cellular-net dislocation substructure, there is a
structure formed by the randomly distributed disloca-
tions at a depth of 45 μm. The viscous character of
STEEL IN TRANSLATION  Vol. 52  No. 10  2022
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Fig. 4. Dependence of scalar dislocation density on the dis-
tance from the irradiation surface of Co–Cr–Fe–Mn–Ni
HEA system (Es = 20 J/cm2).
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HEA destruction and the formation of regions with a
lamellar structure after the EBT were revealed [64].

CONCLUSIONS

The studies on high-entropy alloys films and coat-
ings and surface modification by different methods are
substantially intensified for the last five years. The
papers on the methods of deposition of coatings on
stainless steels and titanium alloys, which improve tri-
bological and mechanical properties, and corrosion
resistance over a wide temperature range, are reviewed
and analyzed. The attention is focused on the analysis
of physical mechanisms of the observed effects. New
aspects of coating deposition and post-treatment are
considered. The potentials for the use of electron-
beam treatment to modify and harden the HEA sur-
face are shown.
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