ISSN 2311-8342

Всемирная ассоциация выставочной индустрии

Российский союз выставок и ярмарок Торгово-промышленная Палата РФ

УГОЛЬ и МАЙНИНГ

2 0 1 7

Наукоемкие технологии разработки и использования минеральных ресурсов

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет»

ВК «Кузбасская ярмарка»

НАУКОЕМКИЕ ТЕХНОЛОГИИ РАЗРАБОТКИ И ИСПОЛЬЗОВАНИЯ МИНЕРАЛЬНЫХ РЕСУРСОВ

НАУЧНЫЙ ЖУРНАЛ

№3 - 2017

УДК 622.2 ISSN 2311-8342

ББК 33.1 Н 340

Главный редактор д.т.н., проф. Фрянов В.Н.

Редакционная коллегия:

чл.-корр. РАН, д.т.н., проф. Клишин В.И., д.т.н., проф. Мышляев Л.П., д.т.н. Павлова Л.Д. (технический редактор), д.т.н. Палеев Д.Ю., д.т.н., проф. Домрачев А.Н., д.э.н., проф. Петрова Т.В.

Н 340 Наукоемкие технологии разработки и использования минеральных ресурсов : науч. журнал / Сиб. гос. индустр. ун-т; под общей ред. В.Н. Фрянова. — Новокузнецк, 2017. - N = 3. - 484 с.

Рассмотрены аспекты развития инновационных наукоёмких технологий диверсификации угольного производства и обобщены результаты научных исследований, в том числе создание роботизированных и автоматизированных угледобывающих и углеперерабатывающих предприятий, базирующиеся на использовании прорывных технологий добычи угля и метана, комплексной переработке этих продуктов в угледобывающих регионах и реализации энергетической продукции потребителям в виде тепловой и электрической энергии.

Журнал предназначен для научных и научно-технических работников, специалистов угольной промышленности, преподавателей, аспирантов и студентов вузов.

Номер подготовлен на основе материалов Международной научно-практической конференции «Наукоемкие технологии разработки и использования минеральных ресурсов», проводимой в рамках специализированной выставки технологий горных разработок «Уголь России и Майнинг» (Новокузнецк, 6-9 июня 2017 г).

Конференция проведена при финансовой поддержке Российского фонда фундаментальных исследований, проект № 17-05-20150

Основан в 2015 г. Выходит 1 раз в год

Учредитель - Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет»

УДК 622.2 ББК 33.1

© Сибирский государственный индустриальный университет, 2017

3 – ОАО «Сибгипрошахт», г. Новосибирск, Россия	
МЕТОДЫ ОЦЕНИВАНИЯ ПОДОБИЯ СИСТЕМ УПРАВЛЕНИЯ	278
1 д.т.н. Евтушенко В.Ф., 2 д.т.н. Бурков В.Н. 3 д.т.н. Мышляев Л.П., 3 Макаров Г.В.	
1 — Сибирский государственный индустриальный университет, г. Новокузнецк, Россия	
2 – Институт проблем управления РАН, г. Москва, Россия	
3 – ООО «Научно-исследовательский центр систем управления», г. Новокузнецк, Россия	
ОПРЕДЕЛЕНИЕ ОБЛАСТЕЙ ЭФФЕКТИВНОСТИ СИСТЕМ АВТОМАТИЧЕСКОГО	
РЕГУЛИРОВАНИЯ ОБЪЕКТОВ С РАЗЛИЧНЫМИ ТИПАМИ РЕЦИКЛОВ	281
1 д.т.н. Мышляев Л.П., 2 Циряпкина А.В., 3 д.т.н. Бурков В.Н., 4 к.э.н. Йвушкин К.А.	
1 – OOO «Научно-исследовательский центр систем управления», г. Новокузнецк, Россия	
2 – Сибирский государственный индустриальный университет, г. Новокузнецк, Россия	
3 – Институт проблем управления РАН, г. Москва, Россия	
4 – Объединенная компания «Сибшахтострой», г. Новокузнецк, Россия	
ОЦЕНИВАНИЕ ПОДОБИЯ ТИПОВЫХ СИСТЕМ УПРАВЛЕНИЯ НА ПРИМЕРЕ ОБЪЕКТО	R
УГЛЕОБОГАТИТЕЛЬНЫХ ФАБРИК	
1 Макаров Г.В., 2 к.э.н. Ивушкин К.А., 1 д.т.н. Евтушенко В.Ф., 1 д.т.н. Мышляев Л.П.	203
1 – OOO «Научно-исследовательский центр систем управления», г. Новокузнецк, Россия	
2 – Объединенная компания «Сибшахтострой», г. Новокузнецк, Россия	
ОБ ОСОБЕННОСТЯХ ИДЕНТИФИКАЦИИ МНОГОМЕРНЫХ ОБЪЕКТОВ	200
С РАСПРЕДЕЛЕННЫМИ ВОЗДЕЙСТВИЯМИ	288
¹ д.т.н. Мышляев Л.П., ² Леонтьев И.А., ¹ к.т.н. Грачев В.В., ³ Васькин В.В., ¹ Раскин М.В.,	
³ Старченко Е.В.	
1 – ООО «Научно-исследовательский центр систем управления», г. Новокузнецк, Россия	
2 – ЗАО «Стройсервис», г. Кемерово, Россия	
3 – ОФ «Матюшинская», г. Прокопьевск, Россия	
ПРОЦЕДУРА ИДЕНТИФИКАЦИИ НАТУРНЫХ СТРУКТУР ПУТЕМ ГЕНЕРИРОВАНИЯ	
ФРАКТАЛОВ	291
д.т.н. Мышляев Л.П., Циряпкина И.В., Саламатин А.С.	
ООО «Научно-исследовательский центр систем управления», г. Новокузнецк, Россия	
СРЕДА ПРОГРАММИРОВАНИЯ ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА	
И ЕЁ ПРИМЕНЕНИЕ ДЛЯ ПРОГНОЗА ОГНЕСТОЙКОСТИ ПОДЗЕМНЫХ	
СООРУЖЕНИЙ	295
¹ д.т.н. Каледин В.О., ² к.т.н. Каледин Вл.О.	
1 – Новокузнецкий институт-филиал ФГБОУ ВО «Кемеровский государственный университе	Γ»,
г. Новокузнецк, Россия	
2 – АО «Центральный научно-исследовательский институт специального машиностроения»,	
г. Хотьково, Россия	
МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ МАШИНЫ ДВОЙНОГО ПИТАНИЯ	
В АСИНХРОННОМ РЕЖИМЕ И ПЕРСПЕКТИВЫ ЕГО ПРИМЕНЕНИЯ	
В ЭЛЕКТРОПРИВОДЕ РУДНИЧНЫХ МАШИН	298
д.т.н. Островлянчик В.Ю., Поползин И.Ю., к.т.н. Кубарев В.А., Маршев Д.А.	, .
Сибирский государственный индустриальный университет, г. Новокузнецк, Россия	
СИСТЕМА УПРАВЛЕНИЯ РЕАКТИВНЫМ ВЕНТИЛЬНО-ИНДУКТОРНЫМ	
ЭЛЕКТРОПРИВОДОМ ГОРНЫХ МАШИН В ГЕНЕРАТОРНОМ РЕЖИМЕ РАБОТЫ	305
к.т.н. Иванов А.С., к.т.н. Пугачева Э.Е., Каланчин И.Ю.	505
Сибирский государственный индустриальный университет, г. Новокузнецк, Россия	
СИСТЕМА УПРАВЛЕНИЯ ДРОБИЛЬНОЙ ВАЛКОВОЙ МАШИНОЙ В АВАРИЙНЫХ	
	200
СИТУАЦИЯХ	508
д.т.н. Никитин А.Г., к.т.н. Тагильцев-Галета К.В., Чайников К.А.	
Сибирский государственный индустриальный университет г. Новокузнецк, Россия	
ДИАГНОСТИРОВАНИЕ РЕЖИМОВ ДРОБЛЕНИЯ ГОРНЫХ ПОРОД ДЛЯ ПОВЫШЕНИЯ	211
ЭФФЕКТИВНОСТИ РАБОТЫ ОДНОВАЛКОВОЙ ДРОБИЛКИ	311
д.т.н. Никитин А.Г., к.фм.н. Лактионов С.А., Медведева К.С.	
Сибирский госуларственный индустриальный университет, г. Новокузнецк. Россия	

моделей. / В.Ф Евтушенко, Л.П. Мышляев, Г.В. Макаров, К.А. Ивушкин, Е.В Буркова // Сб. науч. статей межд. конф. «Наукоемкие технологии разработки и использования минеральных ресурсов. - Новокузнецк, 2016. - С. 270–279.

- 3. Евтушенко В.Ф. Оценивание эффектов неконтролируемых возмущений для установки сжигания водно-шламового топлива / В.Ф. Евтушенко, Л.П. Мышляев, К.А. Ивушкин, Д.Г. Березин, Ж.М. Гафиятов, Т.В. Тюжин // Сб. науч. статей межд. конф. «Наукоемкие технологии разработки и использования минеральных ресурсов». Новокузнецк, 2012. С. 201–207.
- 4. Макаров Г.В. Исследования подобия систем автоматического регулирования с типовыми моделями объектов / Г.В. Макаров, В.Ф. Евтушенко, Н.Л. Лысенко // Системы автоматизации в образовании, науке и производстве: тр. X всерос. науч.-практ. конф. (с межд. участ.); под ред. д.т.н., проф. С.М. Кулакова, д.т.н., проф. Л.П. Мышляева, СибГИУ. Новокузнецк, 2015. С. 498-501.
- 5. Мышляев Л.П. Применение физических моделей в задачах испытания и настройки систем управления (на примере установки сжигания водоугольного топлива). / Л.П. Мышляев, А.А. Ивушкин, В.Ф. Евтушенко, В.Н. Бурков, Г.В. Макаров, Е.В. Буркова // Сб. науч. статей Межд. конф. «Наукоемкие технологии разработки и использования минеральных ресурсов. Новокузнецк, 2015. С. 211–218.
- 6. Рыков А.С. Методы системного анализа: оптимизация / А.С. Рыков. М.: НПО «Изд-во экономика», 1999.-255 с.
- 7. Евтушенко В.Ф. Исследование систем управления с применением физических моделей / В.Ф. Евтушенко, Л.П. Мышляев, К.А. Ивушкин, Г.В. Макаров, Е.В. Буркова // Системы автоматизации в образовании, науке и производстве: тр. Х всерос. науч.-практ. конф. (с межд. участ.); под ред. д.т.н., проф. С.М. Кулакова, д.т.н., проф. Л.П. Мышляева, СибГИУ. Новокузнецк, 2015. С. 159-165.
- 8. Ротач В.Я. Расчет динамики промышленных автоматических систем регулирования / В.Я. Ротач. М.: Энергия, 1973. 439 с.

УДК 681.51

ОПРЕДЕЛЕНИЕ ОБЛАСТЕЙ ЭФФЕКТИВНОСТИ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ОБЪЕКТОВ С РАЗЛИЧНЫМИ ТИПАМИ РЕЦИКЛОВ

¹д.т.н. Мышляев Л.П., ²Циряпкина А.В., ³д.т.н. Бурков В.Н., ⁴к.э.н. Ивушкин К.А.

- 1 ООО «Научно-исследовательский центр систем управления», г. Новокузнецк, Россия
- 2 Сибирский государственный индустриальный университет, г. Новокузнецк, Россия 3 Институт проблем управления РАН, г. Москва, Россия
 - 4 Объединенная компания «Сибшахтострой», г. Новокузнецк, Россия

Аннотация. Работа посвящена исследованию систем автоматического регулирования объектов с различными типами рециклов. Поставлена задача по сравнительному анализу эффективности систем с типовым законом регулирования и предложенных синтезированных систем, а также по определению областей эффективной работы в зависимости от варьируемого значения отношения времени запаздывания в цепи рецикла и в прямой цепи.

Ключевые слова: рецикл, объект с положительной обратной связью, система автоматического регулирования.

Повышение эффективности технологических процессов переработки сырья, экологичности процессов, а порой и их осуществимости достигается за счет введения положительных обратных связей в объекты управления (объекты с рециклом). Примерами таких объектов могут служить водношламовые системы обогащения полезных ископаемых, процессы окомкования материалов при получении агломерата в металлургическом производстве, социально-экономические системы при выделении материальных и финансовых ресурсов в прямой зависимости от результатов деятельности. Введение положительных обратных связей в объекты управления придает им качественно новые свойства, существенно изменяет динамику поведения и усложняет процесс управления.

Математические модели объектов с рециклом в пространстве состояний в достаточно общем виде описываются выражениями [1]:

$$\dot{X}(t) = A(t) \cdot X(t - \tau_x) + B(t) \cdot U(t - \tau_u) + C(t) \cdot W(t - \tau_w);$$

$$Y(t) = D(t) \cdot X(t - \tau_v) + F(t) \cdot E(t - \tau_e),$$

где X, U, W, Y, E - векторы состояний, управления, внешних воздействий, выходов и погрешносоответствующие измерений; $\tau_x, \tau_u, \tau_w, \tau_v, \tau_e$ времена A(t), B(t), C(t), D(t), F(t) — матрицы соответствующих размерностей; t — непрерывное время.

Классификация объектов с рециклом в зависимости от типа рецикла и его влияние на объектов с ект управления представлена в табл. 1 [2, 3].

Для объектов с решиклом «по концентрации», «по массе», «по параметрам» были синтезированы системы автоматического регулирования (САР), представленные на рис. 1.

Для полученных САР и САР с типовыми законами регулирования был проведен сопоставительный анализ эффективности, а также определены области эффективной работы систем в зависимости от соотношения времени запаздываний в цепи рецикла и в прямой цепи.

Постановка задачи.

Дано.

- 1. Структуры САР объектов с рециклом «по концентрации», «по массе», «по параметрам» с типовым законом f_R регулирования и базовые структуры САР.

2. Операторы блоков САР
$$\varphi_0(S) = \frac{k_0}{T_0S+1}, \ \varphi_0^M(S) = \frac{k_0^M}{T_0^MS+1}, k_0 = k_0^M, T_0 = T_0^M \ \text{- объект с самовыравниванием в прямой цепи;}$$

$$\varphi_r(S) = \frac{k_r}{T_rS+1}, \varphi_r^M(S) = \frac{k_r^M}{T_r^MS+1}, k_r = k_r^M, T_r = T_r^M, \text{ где } k_0, k_r \ \text{- коэффициенты передачи, } T_0, T_r \ \text{- постоянные времени;}$$

$$f(S) = \frac{k_r^M}{T_r^MS+1}, k_r = k_r^M, T_r = T_r^M, \text{ где } k_0, k_r \ \text{- коэффициенты передачи, } T_0, T_r \ \text{- постоянные времени;}$$

$$f(S) = \frac{k_r^M}{T_r^MS+1}, k_r = \frac{$$

- 3. Вариации отношения ${}^{\tau_r}\!/_{\tau_0}$ в диапазоне [1; 45] для объектов с рециклом «по концентрации» и «по массе» (при $\alpha = 0.6$), в диапазоне [1; 2,5] - для объектов с рециклом «по параметрам».
- 4. Ограничения на величину входного воздействия $u_2 \in [0; 100]$, влияющего на значение блока деления, для CAP объектом с рециклом «по параметрам».

Критерий эффективности: $q(t) = \frac{1}{T} \int_{t-1}^{T} |y^*(\theta) - y(\theta)| d\theta$, где T — время переходного процесса.

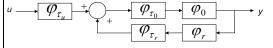
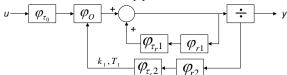
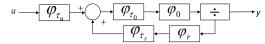

Требуется. Определить область эффективной работы САР объектами с рециклом всех классов.

Таблица 1

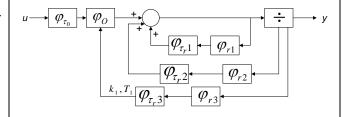
Классификация объектов с рециклом (с указанием структуры модели объекта)


1 класс

Объект с рециклом «по концентрации». Все расходы материала фиксированы, а концентрация элементов (температура и др.) материала изменяется. Матрица A(t) не зависит от состояния X(t) и D(t) = 1.


3 класс

Объект с рециклом «по параметрам». Рецикл влияет на параметры отдельных их составляющих. В этом случае матрицы B(t) и C(t) зависят от состояния X(t).



2 класс

Объект с рециклом «по массе». За выходное воздействие принимается часть материала (готовой продукции), поступающей на выход объекта, а другая часть материала поступает в цепь рецикла. Матрица A(t) зависит от состояния X(t) и $D(t) \neq 1$.

Объект с комбинированным рециклом.

Переход от операторов φ_0 , φ_r , φ_{τ_u} , φ_{τ_0} , φ_{τ_r} к рекуррентно-разностной форме сделан методом конечных разностей. Программирование осуществлено в системе Microsoft Office Excel. Результаты численных исследований при вариации соотношений ${}^{\tau_r}/{}_{\tau_0}$ для CAP объектов с рециклом «по концентрации», «по массе», «по параметрам» представлены в табл. 2-4.

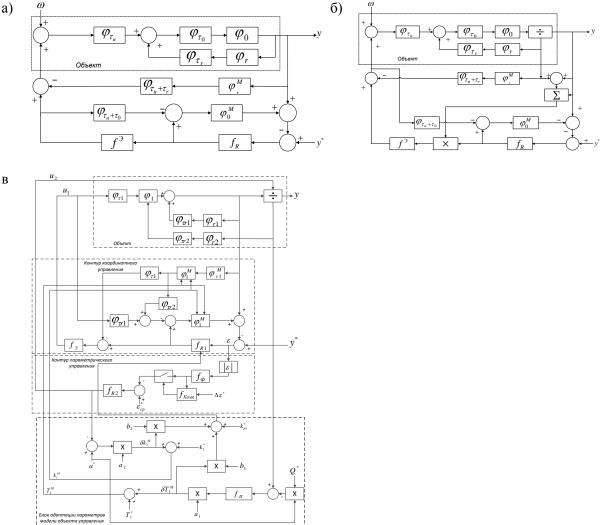


Рис. 1 – Структуры синтезированных САР объекта с рециклом: а) по концентрации, б) по массе, в) по параметрам

Таблица 2 Критерий эффективности для синтезированной САР объектом с рециклом «по концентрации» и САР с типовым законом регулирования

τ_{r}	Критерий эффективности, отн.ед.		
$^{\prime}/\tau_0$	САР с типовым законом регулирования	Синтезированная САР	
1	неустойчива	4,99	
5	неустойчива	5,02	
10	неустойчива	6,13	
15	неустойчива	7,50	
20	неустойчива	8,66	
30	неустойчива	10,61	
35	неустойчива	11,48	
37	Граница устойчивости	11,82	
38	19,26	11,98	
40	19,14	12,28	
45	18,78	12,98	

Таблица 3

Критерий эффективности для синтезированной CAP объектом с рециклом «по массе» и CAP с типовым законом регулирования

τ_{r}	Критерий эффективности	, отн.ед.				
τ/τ_0	САР с типовым законом регулирования	Синтезированная САР				
1	3,84	2,32				
5	3,97	2,48				
10	4,62	2,59				
15	5,27	2,99				
20	5,42	3,19				
25	5,82	3,65				
30	6,20	4,40				
35	6,52	4,87				
40	6,79	5,28				
45	7,04	5,70				

Таблица 4 Критерий эффективности для синтезированной САР объектом с рециклом «по параметрам»

reprine support in the control of th						
САР под влияние	м внешних ступенчатых воз-	САР под влиянием внешних ступенчатых				
действий по возмущающему входу $\omega(t)$		воздействий по задающему входу $y^*(t)$				
τ_{r}	Критерий эффективности,	$ au_r/ au_0$	Критерий эффективно-			
$ au_r/ au_0$	отн.ед.	τ/ au_0	сти, отн.ед.			
1	3,708	1	5,248			
1,25	3,824	1,25	5,310			
1,5	3,954	1,5	5,369			
1,75	3,943	1,75	5,429			
2,0	4,521	2,0	5,512			
2,1	Граница устойчивости	2,1	Граница устойчивости			
2,25	Неустойчива	2,25	Неустойчива			
2,5	Неустойчива	2,5	Неустойчива			

Выводы. По результатам решения задачи сделаны следующие выводы.

- 1. Синтезированная САР объектом с рециклом «по концентрации» остается устойчивой при любых соотношениях ${}^{\tau_r}/_{\tau_0} \in [1;45]$, в то время как САР с типовым законом регулирования становится устойчивой только при достижении ${}^{\tau_r}/_{\tau_0}$ величины 38.
- 2. Синтезированная САР и САР с типовым законом регулирования объекта с рециклом «по массе» устойчивы при любых соотношениях ${}^{\tau_r}/_{\tau_0} \in [1;45]$.
- 3. САР объектом с рециклом «по параметрам» устойчива при любых значениях отношения запаздываний в прямой цепи и цепи рецикла $^{\tau_r}\!/_{\tau_0}$ в диапазоне [1; 2,1]; при $^{\tau_r}\!/_{\tau_0} >$ 2,1 система становится неустойчивой.
- 4. Для устойчивых систем во всем исследуемом диапазоне соотношений $^{\tau_r}/_{\tau_0}$ синтезированная САР объекта с рециклом превосходит по среднемодульному критерию САР с типовым законом регулирования не менее чем в 1,5 раза.
- 5. Во всем исследуемом диапазоне соотношений ${}^{\tau_r}/_{\tau_0}$ время переходного процесса синтезированной САР меньше времени переходного процесса САР с типовым законом регулирования не менее, чем в 3 раза.

Результаты решения данной задачи могут быть применены как для настройки регуляторов при создании систем автоматизации, так и для выработки технологических решений на стадии проектирования агрегатов и технологического регламента, таких, чтобы конструктивное исполнение агрегатов прямой цепи и в цепи рецикла отвечало рассчитанным условиям.

Работа выполнена при поддержке гранта РФФИ по проекту №15-07-02231

Библиографический список

- 1. Рей У. Методы управления технологическими процессами / У. Рей. М.: Мир, 1983. 368 с.
- 2. Циряпкина А.В. Классификация объектов с рециклом и анализ влияния неопределенностей моделей на эффективность САР этих объектов / А.В. Циряпкина, Л.П. Мышляев, К.А. Ивушкин, В.В. Грачев // Известия ВУЗов. Черная металлургия. 2015. №12. С. 925 931.
- 3. Циряпкина А.В. Разновидность объектов с рециклами и особенности их управления / А.В. Циряпкина, Л.П. Мышляев // Наука и молодежь: проблемы, поиски, решения: труды Всерос. науч. конф. студентов, аспирантов и молодых ученых. Новокузнецк, 2014. С. 176-181.

УДК 681.51

ОЦЕНИВАНИЕ ПОДОБИЯ ТИПОВЫХ СИСТЕМ УПРАВЛЕНИЯ НА ПРИМЕРЕ ОБЪЕКТОВ УГЛЕОБОГАТИТЕЛЬНЫХ ФАБРИК

¹Макаров Г.В., ²к.э.н. Ивушкин К.А., ¹д.т.н. Евтушенко В.Ф., ¹ д.т.н. Мышляев Л.П. 1 − ООО «Научно-исследовательский центр систем управления», г. Новокузнецк, Россия 2 − Объединенная компания «Сибшахтострой», г. Новокузнецк, Россия

Аннотация. Конкретизирована процедура оценивания подобия систем управления. Проведены исследования на натурно-модельных данных, полученных с действующих контуров регулирования углеобогатительной фабрики.

Ключевые слова: подобие систем управления, натурно-математическое моделирование, настройка систем автоматического регулирования, многовариантный генератор рядов данных.

Современные календарные планы строительства крупных промышленных предприятий практически не предусматривают запаса времени на проведение экспериментов и исследовательских работ на этапе пусконаладки. Это вызывает необходимость совершенствования существующих и поиска новых методов, способов и алгоритмов при проектировании и настройке систем автоматического управления.

На этапе проектирования для сокращения сроков и повышения эффективности работы используются, зачастую, готовые решения, в том же виде переносимые с ранее разработанных. Однако, применение известных решений в новых, зачастую сильно отличающихся условиях, приводит к существенному изменению свойств технологического процесса как объекта управления, что требует начинать процедуру выбора и настройки системы управления заново.

Одним из относительно новых направлений в решении этих задач является развитие теории подобия систем управления, приемы и методы которой могут быть использованы как на стадии проектирования, так и внедрения. Необходимым условием при этом является установление подобия новой разрабатываемой системы автоматического управления и системы-прототипа.

Предлагаемый укрупненный алгоритм оценивания подобия на примере систем автоматического регулирования (САР) представлен на рис.1. В качестве натурных систем-прототипов приняты САР технологического комплекса обогатительной фабрики «Матюшинская»: САР плотности суспензии тяжелосредного сепаратора и тяжелосредного гидроциклона. Структура этих натурных САР одинакова [1]. Регулирование плотности рабочей суспензии, подаваемой на сепаратор и зумпф питания гидроциклонов, осуществляется в САР по отклонению (без учета цепи рецикла) путем разбавления кондиционной суспензии добавочной водой с помощью задвижки.

В соответствии с приведенным алгоритмом на рис.1 выполняются следующие основные операции.

Ввод исходных данных.

1. Математические модели каналов преобразования регулирующих воздействий для тяжелосредного сепаратора и для тяжелосредного циклона представлены передаточной функцией

$$\varphi(s) = \frac{k}{Ts+1} \cdot e^{-rs}, \tag{1}$$

где k – коэффициент передачи, T – постоянная времени инерции, τ – время чистого запаздывания, параметры k, T и τ модели объектов регулирования, оценки которых приведены в виде следующих диапазонов [2] значений коэффициентов для тяжелосредного сепаратора

НАУКОЕМКИЕ ТЕХНОЛОГИИ РАЗРАБОТКИ И ИСПОЛЬЗОВАНИЯ МИНЕРАЛЬНЫХ РЕСУРСОВ

НАУЧНЫЙ ЖУРНАЛ

Под общей редакцией профессора В.Н. Фрянова

Компьютерная верстка Л.Д. Павловой

Подписано в печать 25.05.2017 г. Формат бумаги 60х84 1/16. Бумага писчая. Печать офсетная. Усл.печ.л. 28,8 Уч.-изд. л. 30,4 Тираж 1000 экз. Заказ 295

Сибирский государственный индустриальный университет 654007, г. Новокузнецк, ул. Кирова, 42. Издательский центр СибГИУ