Министерство науки и высшего образования Российской Федерации ФГБОУ ВО «Сибирский государственный индустриальный университет»

Актуальные проблемы транспорта в XXI веке

Труды II Международной научно-практической конференции

УДК 656(06)

A 437

Редакционная коллегия:

к.э.н., доцент, Т.Н. Борисова, к.т.н., доцент, О.В. Князькина к.т.н., доцент, И.Ю. Кольчурина, к.э.н., доцент, О.П. Черникова

A 437 Актуальные проблемы транспорта в XXI веке: труды Международной II научно-практической конференции Министерство науки высшего образования Российской Федерации, Сибирский государственный индустриальный университет; под ред. О.В. Князькиной. – Новокузнецк: Издательский центр СибГИУ, 2023. – 371 с.: ил.

Труды конференции включают доклады по актуальным вопросам: управление эффективностью систем и процессов транспорта; организация и управление перевозками на транспорте (по отраслям); теория и практика совершенствования производственных систем; экономика производственных и транспортных систем.

Предназначено для специалистов в сфере транспорта, управления производственными системами, экономики организации и может быть использовано научно-техническими работниками, аспирантами и студентами старших курсов.

ОРГАНИЗАТОРЫ И ПАРТНЕРЫ КОНФЕРЕНЦИИ:

Дирекция по транспорту и логистике АО «ЕВРАЗ ЗСМК»; МБУ «Дирекция ДКХиБ» Новокузнецкого городского округа; Проектный офис по развитию общественного транспорта г. Новокузнецка.

УДК 656(06)

© Сибирский государственный индустриальный университет, 2023

СОДЕРЖАНИЕ

СЕКЦИЯ 1 УПРАВЛЕНИЕ ЭФФЕКТИВНОСТЬЮ СИСТЕМ И ПРОЦЕССОЕ	}
ТРАНСПОРТА	
Беспилотные автомобили	
Андрейченко А.Е	11
Перспективы применения электрических летательных аппаратов для грузовых	
пассажирских перевозок	
Баклушина И.В	14
Совершенствование транспортного процесса путей необщего пользования	
Беляев С.В	17
Развитие беспилотных технологий на автомобильном транспорте	
Васильев Е.А	21
Внедрение интеллектуальной системы проведения коммерческого осмотра в	
пунктах ПКО и КПБ	
Власова Н.В., Оленцевич В.А	26
Стратегические принципы развития умного города	
Вундерзе А., Баклушина И.В	32
Эволюция умных городов	
Головина А. А., Князькина О.В	36
Цифровизация логистики на траспорте в России	
Горлов Д.П	40
Совершенствование инновационных процессов разработки автомобильного	
транспорта	
Д̂ернова̂ К.К	43
Параллельный импорт автомобилей	
Ефимов А.А., Князькина О.В	48
Транспортные коридоры России и их перспективы	
Зайленко К.С., Зайленко С.А	52
Умный транспорт умного города	
Землянухина А.Й., Князькина О.В	55
Проблемы внедрения беспилотного железнодорожного транспорта в России	
Кукус М.В., Князькина О.В	59
Умный транспорт	
Маулетказы В.С	63
Применение телекоммуникационных технологий на железнодорожном	
транспорте	
Процай Е.С., Князькина О.В	66
Умный трафик современного города	
Рыжов В.С., Князькина О.В.	71
Модификация конструкции планетарного редуктора с целью повышения	
надежности наземных транспортных средств	
Серебряков И.А., Гудимова Л.Н.	75
Логистическая система и способы улучшения ее эффективности	
Сергеева В.М.	79

https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (дата обращения: 14.03.2023).

- 2 Eggers, W. D. Forces of change: Smart cities / W.D. Eggers, J. Skowron // Delloite official website: [сайт]. URL : https://www2.deloitte.com/us/en/insights/focus/smart-city/overview.html (дата обращения: 14.03.2023).
- 3 Умный транспорт как часть экосистемы технологий умного города // Системы безопасности : [сайт]. URL: https://www.secuteck.ru/articles/umnyj-transport-kak-chast-ehkosistemy-tekhnologij-umnogo-goroda (дата обращения: 14.03.2023).
- 4 Умный транспорт // Intelvision: [сайт]. URL https://www.intelvision.ru/blog/smart-transport (дата обращения: 14.03.2023).

УДК 316.776.32

Применение телекоммуникационных технологий на железнодорожном транспорте

Процай Е.С., к.т.н., доцент Князькина О.В.

Сибирский государственный индустриальный университет», г. Новокузнецк, Россия

Аннотация: Рассматриваются телекоммуникационные технологии на железнодорожном транспорте. Описано применение технологии GSM, которая позволяет избежать неисправностей на железнодорожных путях, определить местоположение предотвратить поездов. Представлено столкновения решение создании интеллектуальной системы контроля и управления поездами, позволяющее повысить безопасность движения железнодорожного транспорта.

Ключевые слова: GPS, GSM, железнодорожный транспорт, телекоммуникационные технологии.

Application of telecommunication technologies in railway transport Protsai E.S., associate professor Knyazkina O.V.

Siberian State Industrial University, Novokuznetsk, Russia

Abstract: Telecommunication technologies on railway transport are considered. The application of GSM technology is described, which allows avoiding malfunctions on railway tracks, determining the location and preventing train collisions. A decision is presented on the creation of an intelligent system for monitoring and controlling trains, which makes it possible to improve the safety of railway transport.

Keywords: GPS, GSM, railway transport, telecommunication technologies.

Телекоммуникационные технологии играли центральную роль на железных дорогах с момента их создания. С самого начала телефонные линии и линии связи были проложены вдоль железнодорожных маршрутов, поскольку связь имела решающее значение в железнодорожных операциях.

Даже в наше время улучшение оказания железнодорожных услуг и операций затруднено без интеграции сильных телекоммуникационных технологий. Железнодорожные системы улучшились в различных областях благодаря широкому использованию новых технологий. Некоторые из наиболее важных достижений связаны с областями безопасности, обслуживанию клиентов и доступом к железнодорожным службам.

Железнодорожный транспорт является высокоскоростным, надежным и экономичным. Высокая энергоэффективность и показатели безопасности очень важны как для перевозки пассажиров, так и грузов. В настоящее время с увеличением плотности железных дорог и развитием высокоскоростного движения появилась необходимость в методах, которые помогут повысить безопасность и надежность передвижения на железнодорожных путях.

Использование телекоммуникационных технологи системах особенно дорожного актуально движения при использовании интеллектуальных транспортных систем. Интеллектуальные транспортные системы (ИТС) – это интегрированная система, использующая широкий спектр коммуникационных, управляющих, сенсорных и электронных технологий, помогающих отслеживать транспортные потоки и управлять ими, уменьшать заторы, предоставлять путешественникам оптимальные маршруты, повышать производительность системы и экономить время и средства [1].

С развитием коммуникационных технологий управление движением железнодорожного транспорта стало более разнообразным. Для управления железнодорожными операциями в прошлом использовалась телеграмма с буквенной контактной формой и азбукой Морзе, затем стали применяться телефоны и связь с системами управления железнодорожного движения. В настоящее время широко используются системы сотовой связи GSM.

Для мониторинга, управления и модернизации услуг железнодорожного транспорта необходима интеллектуальная система, которая использует новые возможности интернет-технологий GSM, GPRS и GPS [2]. Компания Siemens в течение ряда лет занималась разработкой услуг по профилактическому обслуживанию подвижного состава и инфраструктуры. К ним относятся [2]:

- удаленный мониторинг местоположения и состояния всех транспортных средств в режиме реального времени;
 - удаленная диагностика;
 - расследование первопричин неисправностей;
 - автоматическая визуализация данных;
 - алгоритмы для превентивного анализа неисправностей.

Центральной частью системы является настраиваемый агент управления, программный модуль, который получает актуальную информацию (через GPS, различные датчики и т.д.) от объектов, которые он контролирует и проверяет на предмет возможных нарушений безопасности и правил техники безопасности. Система может быть полезна в самых разных

случаях: поломка при пожаре, раскручивание колеса, превышение скорости, прогнозирование возможной тяги, автоматическая остановка поезда при приближении к станции, автоматическое управление рампой, регулирующее движение в местах пересечения дороги с рельсами.

Глобальная система позиционирования GPS — это космическая навигационная система, которая предоставляет информацию о местоположении и времени в любых погодных условиях в любой точке Земли или вблизи нее, где имеется беспрепятственная линия видимости для четырех или более спутников GPS (рисунок 1). Система предоставляет критически важные возможности военным, гражданским и коммерческим пользователям по всему миру [3, 4].

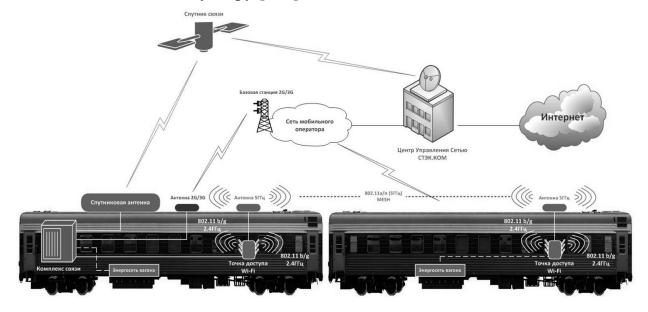


Рисунок 1 — Интеллектуальная система отслеживания железнодорожного транспорта

В настоящее время технологии мобильной связи пятого поколения (5G) активно внедряются, они позволяют конечным пользователям определять время задержки сигнала передачи данных при минимизации и обеспечении практически неограниченной мобильности, связь 5G может предоставить широкие возможности для значительного увеличения скорости. Именно поэтому железнодорожная отрасль заинтересована в использовании перспективных систем связи целью повышения качества и безопасности транспортных услуг [5].

За последние годы в железнодорожной отрасли добились наиболее значительных улучшений в моделировании прозрачной коммуникации с пассажирами, о чем свидетельствует:

- более информативные и удобные для пользователя веб-сайты;
- мобильные приложения, предоставляющие информацию о движущихся транспортных средствах в режиме реального времени и

позволяющие приобретать и выдавать билеты, а также другие функциональные возможности;

- бортовые информационно-развлекательные сервисы;
- динамическая информация о пассажирах и расписании, реализованная на станциях и остановках.

Хорошим примером мобильного приложения, базовая функциональность которого была расширена за счет добавления карт станций, списков коммерческих районов, а также других сервисов, является ADIF (Управление железнодорожной инфраструктурой).

Также на современном этапе внедрения телекоммуникационных технологий, на железнодорожном транспорте, активно используется услуга MAAS, она обеспечивает мгновенный доступ к Интернету и системам информационно-коммуникационных технологий, которые предоставляют информацию о железнодорожном транспорте в режиме реального времени, что является удобным для планирования дальнейшего путешествия, бронирования и покупки билетов. Такие решения, основанные электронных платформах и приложениях, являются актуальными, т.к. в них анализируется ряд возможных сценариев путешествия с использованием различных видов транспорта. Программное обеспечение мобильности MAAS предлагает услуги бронирования и продажи билетов, а также обеспечивает доступ к местам на маршруте, которые важны путешественника, в то же время, отслеживая движение, дорожные работы, инциденты и аварии в режиме онлайн. Это приложение доступно онлайн через мобильные устройства и позволяет выбирать транспорт, также доступный в режиме реального времени, в соответствии с предпочтениями путешественника, такими как: стоимость, время или оставленный углеродный след [6].

Внедрение телекоммуникационных технологий на железнодорожных путях имеет свои преимущества:

- совершенствование систем управления дорожного движения и транспортировки при помощи повышения пропускной способности и безопасности движения;
 - повышение скорости, плотности и надежности дорожного движения;
- минимальные затраты на капитальный ремонт железнодорожного полотна и снижение затрат на ликвидацию последствий аварий;
- информационное взаимодействие между железнодорожными службами и внешними информационными системами, повышение уровня взаимодействия;
- предоставление всех возможностей для пассажиров, в выборе транспорта, бронировании билетов, отслеживания движения транспортного средства.
- В заключении можно сказать, что современная радиосвязь обеспечивает уровень безопасности всех видов транспорта и является основой для повышения эффективности и конкурентоспособности в

железнодорожной отрасли. Применение телекоммуникационных технологий способствует улучшению управления железнодорожными перевозками, мониторингу управления дорожным движением, включая циркуляцию трафика и регулирование дорожного движения. Способствует управлению планированием в режиме реального времени, снижению затрат на железнодорожном транспорте, увеличение транспортного потока, системы безопасности и снижению негативных воздействий. Использование технологий GSM и GPS позволяет системе отслеживать движение поездов и получать самую важную информацию о текущем состоянии. Применение системы мониторинга дорожного движения и получения информации перегрузки происходит в режиме реального времени, расписание движения поездов используется в качестве ценного инструмента для оценки и предотвращения аварийности и столкновения поездов.

Список использованных источников:

- 1 Информационные технологии на железнодорожном транспорте: Учебник для вузов ж.-д. трансп. / под ред. Э.К. Лецкого, Э.С. Поддавашкина, В.В. Яковлева. М.: УМК МПС России, 2001. 668 с.
- 2 Кузнецов, И.А. Интеллектуальные системы управления на железнодорожном транспорте. : сайт. URL: http://avtprom.ru/news/2014/01/29/intellektualnye-sistemy- (дата обращения: 28.02.2023)
- 3 Портал знаний современной авионики : сайт. URL: http://npcas.ru/wiki/sistema-globalnogo-pozitsionirovaniya-gps.html (дата обращения: 28.02.2023)
- 4 Гонжарова, А. П. Анализ спутникового мониторинга транспорта / Гонжарова А. П., Князькина О. В. Текст : непосредственный // Проблемы развития современного общества : сборник научных статей 8-й Всероссийской национальной научно-практической конференции, 19-20 января 2023 г. Курск : Университетская книга, 2023. Т. 3. С.230-233
- 5 Плеханов, П.А. Подвижная связь 5G / П.А. Плеханов, Д.Н. Роенков // Автоматика, связь, информатика. -2019. -№ 5. C. 8-12.
- 6 MAAS Ближайшее или отдаленное будущее транспорта? : сайт. URL: https://lokomo.ru/stati/maas-blizhayshee-ili-otdalennoe-buduschee-gorodskogo-transporta.html (дата обращения: 28.02.2023)