Юго-Западный государственный университет (Россия)
Севастопольский государственный университет
Северо-Кавказский федеральный университет
Пятигорский институт (филиал), (Россия)
РГКП «Северо-Казахстанский государственный университет им. М. Козыбаева»
(Казахстан)

Каршинский государственный университет (Узбекистан)
Бухарский инженерно-технологический институт (Узбекистан)
Самаркандский филиал Ташкентского университета информационных
технологий имени Махаммада Аль Хорезмий (Узбекистан)
Бухарский филиал Ташкентского института инженеров ирригации
и механизации сельского хозяйства (Узбекистан)

ПОКОЛЕНИЕ БУДУЩЕГО: Взгляд молодых ученых-2022

Сборник научных статей 11-й Международной молодежной научной конференции 10-11 ноября 2022 года

Ответственный редактор Γ орохов A.A.

TOM 4

в 5-х томах

Строительство. Градостроительство и архитектура Безопасность жизнедеятельности и охрана окружающей среды Фундаментальные и прикладные исследования в области физики, химии, математики, механики Прогрессивные технологии и процессы

УДК 338: 316:34 ББК 65+60+67 П48 МЛ-69

Председатель оргкомитета – Чевычелов Сергей Александрович, к.т.н., доцент,

заведующий кафедры МТиО, Юго-Западный государственный университет, Россия.

Члены оргкомитета:

Горохов Александр Анатольевич, к.т.н., доцент, ЗАО «Университетская книга».

Okulicz-Kozaryn Walery, Dr. habil, Doctor Honoris Causa, Professor of Wyższa Szkoła Biznesu - National Louis University, Poland

Утаев Собир Ачилович, доцент, д.ф.т.н. (PhD), кафедра Альтернативные и возобновляемые источники энергии, Каршинский государственный университет (Узбекистан)

Агеев Евгений Викторович, д.т.н., профессор кафедры ТМиТ Юго-Западный государственный университет, Россия.

Латыпов Рашит Абдулхакович, д.т.н., профессор, Московский государственный машиностроительный университет (МАМИ), Москва;

Плотников Владимир Александрович, д.э.н., профессор, Санкт-Петербургский государственный экономический университет, Россия

Куц Вадим Васильевич, д.т.н., профессор кафедры МТиО Юго-Западный государственный университет, Россия.

Тохириён Боисджони, д.т.н., доцент кафедры управления качеством и экспертизы товаров и услуг, Уральский государственный экономический университет.

Штапова Ирина Сергеевна, д.э.н., доцент, зав.кафедрой экономики, менеджмента и государственного управления, Пятигорский институт (филиал) СКФУ.

Таран Игорь Леонидович, к.э.н., доцент, Пятигорский институт (филиал) СКФУ.

Куликова Елена Александровна, к.э.н., доцент, Пятигорский институт (филиал) СКФУ.

Поколение будущего: Взгляд молодых ученых- 2022: сборник научных статей 11-й Международной молодежной научной конференции (10-11 ноября 2022 года), Юго-Зап. гос. ун-т., в 5-х томах, Том 4. - Курск: Юго-Зап. гос. ун-т, 2022, - 523 с.

ISBN 978-5-907627-95-6

Содержание материалов конференции составляют научные статьи отечественных и зарубежных молодых ученых. Излагается теория, методология и практика научных исследований. Для научных работников, специалистов, преподавателей, аспирантов, студентов.

Материалы в сборнике публикуются в авторской редакции.

ISBN 978-5-907627-95-6

УДК 338: 316:34 ББК 65+60+67

- © Юго-Западный государственный университет, 2022
- © Северо-Кавказский федеральный университет, Пятигорский институт (филиал), 2022
- © Авторы статей, 2022

Сборник статей 11-й Международной молодежной научной конференции Том 4 9
МИХАЙЛОВ Д.Д., КНЯЗЬКИНА О.В. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ВАГОНОВ – ДУМПКАРОВ
МИХАЙЛОВ Д.Д., КНЯЗЬКИНА О.В. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ РЕФРИЖЕРАТОРНЫХ ВАГОНОВ
МУШКАЛЕНКО С.В. ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ЛАЗЕРНЫХ ТЕХНОЛОГИЙ В ПРОМЫШЛЕННОМ ПРОИЗВОДСТВЕ427
МУШКАЛЕНКО С.В . ТЕХНОЛОГИЧЕСКИЙ БРОКЕР В КАЧЕСТВЕ КОМПАНЬОНА ДЛЯ ИННОВАЦИОННОГО РАЗВИТИЯ ПРОИЗВОДСТВА429
НАУМЕНКО П.А. ПЕРСПЕКТИВЫ РАЗВИТИЯ РАСПРЕДЕЛЕННОЙ ГЕНЕРАЦИИ431
НОВИКОВА М.А. РАЗРАБОТКА МЕРОПРИЯТИЙ ПО ПОВЫШЕНИЮ КАЧЕСТВА ШИН НА ОСНОВЕ ПРОВЕДЕНИЯ PFMEA-АНАЛИЗА С ИСПОЛЬЗОВАНИЕМ НСТРУМЕНТА КАЧЕСТВА АЗ PROBLEM SOLVING
ПАШКИНА В.В. ДВИГАТЕЛИ ИЗ ПЛАСТИКА КАК ПРОГРЕССИВНАЯ ТЕХНОЛОГИЯ ПРОМЫШЛЕННОСТИ
ПОНОМАРЕВ Д.А., РУКАВИЦЫНА А.А. РОБОТИЗИРОВАННЫЕ СИСТЕМЫ ЗАТАРИВАНИЯ И ФАСОВКИ СЫПУЧИХ МАТЕРИАЛОВ В МЯГКИЕ КОНТЕЙНЕРЫ ДЛЯ НУЖД СЕЛЬСКОГО ХОЗЯЙСТВА443
ПОНОМАРЕВ Д.А., ШИЯНОВА К.С. ПЕРСПЕКТИВЫ РАЗВИТИЯ БЕСПИЛОТНОЙ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ТЕХНИКИ
РЕШЕТНИКОВА О.П., ИЗНАИРОВ Б.М., ВАСИН А.Н., ФИНОГЕЕВ Д.Ю., СЕМОЧКИН Г.А. РАЗРАБОТКА ЭЛЕМЕНТОВ САПР ОПЕРАЦИЙ БЕСЦЕНТРОВОГО ШЛИФОВАНИЯ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ
САЗОНОВ Е.В., КОЖЕВНИКОВ М.С., ГРАШКОВ С.А. СПОСОБЫ ВОССТАНОВЛЕНИЯ ДЕТАЛЕЙ НАПЛАВКОЙ
САЗОНОВ Е.В., ШУКЛИН И.С., ГРАШКОВ С.А. СПОСОБЫ ПОВЫШЕНИЯ НАДЕЖНОСТИ И ДОЛГОВЕЧНОСТИ МАШИН
САЗОНОВ Е.В., КОРОВИН М.А., ГРАШКОВ С.А. ОСОБЕННОСТИ ЗАКАЛКИ ЛЕГИРОВАННОЙ СТАЛИ
САЯПИНА Д.И., ЗИМИНА А.Н.А, СЛАВОВА О.В. ИСПОЛЬЗОВАНИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В РОБОТОТЕХНИКЕ
САЯПИНА Д.И., ЗИМИНА А.Н.А, СЛАВОВА О.В. ОТВЕТСТВЕННОСТЬ, ВОЗНИКАЮЩАЯ ПРИ ПРОИЗВОДСТВЕ, ПРИОБРЕТЕНИИ И ИСПОЛЬЗОВАНИИ РОБОТОВ И ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
СИМАКОВ А.А. ОСОБЕННОСТИ ПОЛИМЕРНОГО ЗАВОДНЕНИЯ471
СИМАКОВ А.А. ПРОБЛЕМЫ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ОБРАБАТЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ
СОТНИКОВ Е.В. ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ В ЛЕСНОМ ХОЗЯЙСТВЕ476
СТУДЕНКОВ П.А. ТЕХНОЛОГИЯ РАБОТЫ МЕМБРАННОГО АППАРАТА478
СТУДЕНКОВ П.А. ТЕХНОЛОГИЯ НЕЛИНЕЙНОЙ ЛОКАЦИИ480
ТЮРИН Е.А., ЯРОСЛАВКИН А.Ю. ПРИМЕНЕНИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА ПРИ АНАЛИЗЕ ПРОЦЕССА КРИСТАЛЛИЗАЦИИ
ФЕДЧЕНКО И.В. КОМПЛЕКСНЫЕ МЕТОДЫ ПО СОВЕРШЕНСТВОВАНИЮ ТЕХНОЛОГИЙ ПЕРЕВОЗОК НАЛИВНЫХ И СЫПУЧИХ ГРУЗОВ

0 10-11 ноября 2022 года Поколение будущего: Взгляд молодых ученых - 2022
ХАВРОВ М.С., СИДОРЕНКО А.В. ВОЗМОЖНОСТЬ ЭКСПЛУАТАЦИИ ЭЛЕКТРИЧЕСКИХ АВТОМОБИЛЕЙ В УСЛОВИЯХ СЕВЕРНЫХ ШИРОТ489
ХАРДИКОВ С.В., ГРАШКОВ С.А. СРАВНИТЕЛЬНЫЙ АНАЛИЗ МИКРОТВЕРДОСТИ СПЕЧЕННЫХ ИЗДЕЛИЙ НА ОСНОВЕ ЭЛЕКТРОЭРОЗИОННОЙ ШИХТЫ ИЗ ХРОМСОДЕРЖАЩИХ СТАЛЕЙ
ЦЫГАНКОВ А.Д. ДОСТАВКА ГРУЗОВ С ТЕМПЕРАТУРНЫМ РЕЖИМОМ497
ШАБАНОВ III.И. МЕЖДУНАРОДНО-ПРАВОВЫЕ ОСНОВЫ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ПОЛЕТОВ ГРАЖДАНСКОЙ АВИАЦИИ МЕЖДУНАРОДНОЙ ОРГАНИЗАЦИЕЙ ГРАЖДАНСКОЙ АВИАЦИИ (ИКАО)
ШАБАНОВ III.И. МИРОВАЯ ПРАКТИКА ИСПОЛЬЗОВАНИЯ АВИАЦИИ ОБІЦЕГО НАЗНАЧЕНИЯ
ШАБАНОВ Ш.И. АВИАЦИЯ И ЭКОЛОГИЯ
ШАМАЕВА И.И., КОРОЛЁВА А.Г. РОБОТИЗИРОВАННЫЕ СИСТЕМЫ ДЛЯ БЕЗГЕРБИЦИДНОЙ ОБРАБОТКИ СЕЛЬСКОХОЗЯЙСТВЕННЫХ РАСТЕНИЙ513
ШАРАФУТДИНОВ Д.З. МЕТОДИКА РАСЧЕТА КПД ЭЛЕКТРОДВИГАТЕЛЯ521
ШКОНДИН Д.М., ВАСИЛЬЕВ А.Д. ТОРМОЗНАЯ СИСТЕМА АВТОМОБИЛЯ523

МИХАЙЛОВ ДМИТРИЙ ДЕНИСОВИЧ, студент КНЯЗЬКИНА ОЛЬГА ВЛАДИМИРОВНА, к.т.н., доцент

Сибирский государственный индустриальный университет, Новокузнецк, Россия dima.mi1999@mail.ru

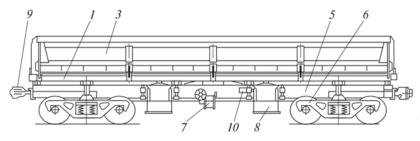
УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ВАГОНОВ – ДУМПКАРОВ

Изучены вопросы, связанные с механизированной и автоматизированной системой погрузо-разгрузочной работы, развитием технических средств инфраструктуры и безопасности транспортировки грузов. Рассмотрены эксплуатационно-технические характеристики вагонов типа думпкар и сделан вывод о наиболее привлекательной конструкции вагона, используемой на железнодорожном транспорте.

Ключевые слова: погрузка и разгрузка вагонов, вагон-самосвал, специализированный подвижной состав, железнодорожный транспорт.

Среди специализированного подвижного состава наибольшую важность для народного хозяйства имеют вагоны – думпкары. Железнодорожные вагоны этого типа являются аналогом грузовиков-самосвалов, они оборудованы пневматическими механизмами, обеспечивающими автоматическую выгрузку содержимого. Такие вагоны широко используются для транспортировки различных сыпучих грузов. За счет своих особенностей думпкары облегчают погрузочноразгрузочные работы и сокращают потери груза при их выполнении [1].

Несмотря на существование разных типов таких вагонов (узкоколейные, четырехосные, шестиосные, восьмиосные), наиболее часто используются на практике четырехосные вагоны-думпкары, которые хорошо себя зарекомендовали и повсеместно используются на магистральных и промышленных железных дорогах.


Рассмотрим конструкцию вагона типа думпкар, который состоит из десяти основных элементов [2]:

- верхняя рама;
- лобовые стенки;
- продольные борта;
- механизмы открытия бортов;
- нижняя рама;
- тележки;
- трубопроводы, оборудование автоматического тормоза;
- пневматические системы разгрузки;
- автосцепное устройство;
- кронштейны крепления цилиндров.

Основными отличиями вагона-самосвала от типовых железнодорожных платформ и грузовых вагонов являются подвижный кузов и откидные борта, которые опускаются со стороны выгрузки, превращаясь в продолжение пола. Так как кузов должен выдерживать значительные нагрузки, его делают усиленным, многослойным.

420 10-11 ноября 2022 года Поколение будущего: Взгляд молодых ученых - 2022

Вся конструкция вагона-думпкара взаимосвязана между собой разными элементами и обеспечивает эффективную и автоматизированную погрузоразгрузочную работу. В общем виде, конструкция вагона приведена на рисунке 1. Более детально рассмотрим устройство вагона-самосвала. На сварную раму кузова укладывают стальной лист. Вдоль всей рамы проходит мощная хребтовая балка из двутавров. Далее идет амортизирующий слой, как правило, это деревянный брус толщиной 6-7,5 см. Настил из брусьев закрывается полом из стальных листов. К нижней балке крепятся автосцепки и тормозные приборы. Вся конструкция сверху закреплена верхней рамой из четырех балок.

- 1. Верхняя рама
- 2. Лобовые стенки
- 3. Продольные борта
- 4. Механизмы открытия бортов
- 5. Нижняя рама
- 6. Тележки
- 7. Трубопроводы
- 8. Пневматические системы разгрузки
- 9. Автосцепное устройство
- 10. Кронштейны крепления цилиндров

Рисунок 1 – Конструкция вагона-думпкара

Четыре-шесть пневматических цилиндров, расположенных попарно, обеспечивают подъем кузова. Их также крепят к кронштейнам на нижней раме. Работают они с помощью сжатого воздуха, поступающего от компрессора на локомотиве поезда, по отдельному «питательному» трубопроводу, с синими наконечниками и кранами.

После освобождения от груза кузов опускается под собственным весом. Также, модель может быть снабжена дополнительными посадочными цилиндрами, которые мягко и без шума опускают кузов на место. Управление выгрузкой – полностью дистанционное. Вагоны снабжены собственным освещением, тормозной системой.

Рассмотрев конструкцию вагона-самосвала, перейдем к основным техническим характеристикам подвижного состава, к примеру, показатели модели 31-

638 (повсеместно используется крупными промышленными предприятиями) выглядят следующим образом:

- грузоподъемность 60 т;
- объем кузова 160 м³;
- масса тары 27 т;
- высота от уровня головки рельсов 2867 мм;
- длина по осям автосцепки 11830 мм;
- ширина 3210 мм;
- суммарный зазор между скользунами от 6 до 12 мм;
- расчетная нагрузка от оси колесной пары на рельсы 213,4 (25,75) кН;
- нормативный межремонтный срок 2 (9) до млн. км (лет) [3].

Особенность конструкции и универсальность ее использования позволяет вагонам-думпкарам иметь ряд преимуществ:

- подходит для погрузки различных сыпучих грузов;
- необязательное человеческое участие при разгрузке вагона, процесс автоматизирован;
- по сравнению с другими вагонами имеет достаточно большую грузоподъемность.

Также при эксплуатации специализированный подвижной состав подвергаются значительным нагрузкам, важна его прочность. В конструкцию думпкара входит, кузов из низколегированной стали марки 09Г2С и жесткая, металлическая рама. Такие вагоны используются на крупных станциях и перегонах, развивая скорость 90 км/час и более [3].

Вагоны-самосвалы применяются во многих областях промышленности:

- перевозка полезных ископаемых на металлургические, обогатительные предприятия, склады, а пустые породы – в отвалы;
- транспортировка сыпучих пород щебня, песка, глины, песчаногравийной смеси, плодородной почвы на заводы, для строительных или сельскохозяйственных работ, вывоз мусора, металлолома;
- доставка леса и древесностружечного сырья на предприятия деревообрабатывающей промышленности, бумкомбинаты.

Таблица 1 – Эксплуатационно-технические характеристики
модификаций вагонов типа думпкар

Наименование показателей	Узкоколейные	Шестиосные	Восьмиосные
Грузоподъемность, т	76-81	117-131	156-180
Объем, м ³	110	175	195
Мак. скорость движения, км/ч	60	90-95	90-95
Масса тары, т	23	29	35
Количество осей, шт	4	6	8

22 10-11 ноября 2022 года Поколение будущего: Взгляд молодых ученых - 2022

После введения в эксплуатацию вагона типа думпкар, началось создание различных модификаций на основе этой конструкции, были разработаны аналоги, отличающиеся особой спецификой и техническими характеристиками, а именно были созданы [4]:

- 1 Узкоколейные вагоны-думпкары как следует из названия, вагоны этого типа предназначены для местных узкоколейных трасс. Такие вагоны имеют не широкие торцевые борта, что сокращает объем тары, а впоследствии и уменьшает грузоподъёмность.
- 2 Шестиосные вагоны-думпкары такие вагоны имеют шесть осей колесных пар, что повышает их грузоподъёмность до 105 тонн. Чаще всего вагоны это типа используют в промышленности.
- 3 Восьмиосные (усиленные) вагоны-думпкары такие вагоны имеют восемь осей колесных пар, что повышает их грузоподъемность до 145 тонн включительно. Предназначены для транспортировки леса, скальных пород и руды на горнодобывающих и металлургических предприятиях.

В таблице 1 представлены основные технические характеристики модификаций вагонов-думпкаров.

Из информации, приведенной в таблице 1 можно заключить, что восьмиосные вагоны-думпкары являются самыми ходовыми, так как они считаются лидерами по грузоподъёмности и скорости.

На сегодняшний день вагоны-думпкары используется на многих железнодорожных станциях ОАО «РЖД» и перегонах, обеспечивая бесперебойную погрузо-разгрузочную работу, а также безопасность транспортировки грузов. Применение специализированного подвижного состава на практике позволяет более эффективно работать за счет механизированной разгрузки и погрузки вагонов.

Список литературы

- 1 Специализированный подвижной состав устройство, область применения, особенности и назначение. [Электронный ресурс]. Точка доступа: https://pikabu.ru/story/vagonsamosval dumpkar 5720945?ysclid=199i5gdhca374783804
- 2 Конструкционные особенности думпкаров. Основные положения устройства вагоновсамосвалов и принцип их работы. [Электронный ресурс]. — Точка доступа: https://studref.com/476378/tehnika/konstruktsiya dumpkarov?ysclid=l99ia3jmlk549446829
- 3 Технические характеристики вагонов типа думпкар. Эксплуатационные возможности и преимущества на перегонах. [Электронный ресурс]. Точка доступа: https://studwood.net/2062692/tehnika/ustroystvo_dumpkara_vagona?ysclid=199i9t05u0518765330
- 4 Модификации думпкаров. Развитие технических средств для обеспечения безопасности погрузо-разгрузочных работ. [Электронный ресурс]. Точка доступа: https://studref.com/476377/tehnika/vagony samosvaly dumpkary?ysclid=199idivuzh444589595